【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装

本文主要是介绍【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

overoad代码中包含一段有意思的代码,可以从视图投影矩阵逆推出摄像机的视锥体,本文来分析一下原理

一、平面的方程

视锥体是用平面来表示的,所以先看看平面的数学表达。
平面方程可以由其法线N=(A, B, C)和一个点Q=(x0,y0,z0)定义,其形式为:
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0})+B(y-y_{0})+C(z-z_{0})=0 A(xx0)+B(yy0)+C(zz0)=0          整理变为: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0,       其中 D = − A x 0 − B y 0 − C z 0 D=−Ax_{0}−By_{0}−Cz_{0} D=Ax0By0Cz0
         方程进一步可以将方程归一化:
A A 2 + B 2 + C 2 x + B A 2 + B 2 + C 2 y + C A 2 + B 2 + C 2 z + D A 2 + B 2 + C 2 = 0 \frac{A}{\sqrt{A^{2}+B^{2}+C^{2} } } x + \frac{B}{\sqrt{A^{2}+B^{2}+C^{2} } }y+\frac{C}{\sqrt{A^{2}+B^{2}+C^{2} } }z+\frac{D}{\sqrt{A^{2}+B^{2}+C^{2} } } = 0 A2+B2+C2 Ax+A2+B2+C2 By+A2+B2+C2 Cz+A2+B2+C2 D=0 写成通用格式 a x + b y + c z + d = 0 ax+by+cz+d=0 ax+by+cz+d=0
那么点 p = ( x 1 , y 1 , z 1 ) p=(x_{1}, y_{1}, z_{1}) p=(x1,y1,z1)到平面的距离为:
D = a x 1 + b y 1 + c z 1 + d D=ax_{1}+by_{1}+cz_{1}+d D=ax1+by1+cz1+d
一个平面会将空间分成两个半空间(halfspace),进一步法线的朝向的空间称为正半空间(positive halfspace),法线背离的空间称为反半空间(negative halfspace)。根据D的符号可以判断点的相对位置:

  • D < 0, 点位于反半空间
  • D = 0, 点位于平面上
  • D > 0, 点位于正半空间

这种特性可用于判断点是否在视锥体内部。

二、OpenGL视锥体

视锥体是摄像机能看到的区域,只有在视锥体内的物体才能被看到。其由近平面、远平面与周围四个面组成,形成一个平截头体区域。
在这里插入图片描述

三、Overload对视锥体的封装

Overload对视锥体的封装在文件Frustum.h、Frustum.cpp中。先看其定义:

class Frustum
{
public:/*** 根据视图投影矩阵提取视锥体* @param p_viewProjection*/ void CalculateFrustum(const OvMaths::FMatrix4& _viewProjection);/*** 判断点是不是在视锥体内* @param p_x* @param p_y* @param p_z*/bool PointInFrustum(float p_x, float p_y, float _z) const;/*** 判断球是不是在视锥体内* @param p_x* @param p_y* @param p_z* @param p_radius*/bool SphereInFrustum(float p_x, float p_y, loat p_z, float p_radius) const;/*** 判断立方体是不是在视锥体内* @param p_x* @param p_y* @param p_z* @param p_size*/bool CubeInFrustum(float p_x, float p_y, float _z, float p_size) const;/*** 判断包围球是不是在视锥体内* @param p_boundingSphere* @param p_transform*/bool BoundingSphereInFrustum(const vRendering::Geometry::BoundingSphere& _boundingSphere, const OvMaths::FTransform& _transform) const;/*** 返回近平面*/std::array<float, 4> GetNearPlane() const;/*** 返回远平面*/std::array<float, 4> GetFarPlane() const;
private:float m_frustum[6][4];  // 6个平面的方程参数
};

m_frustum保存着6个平面的方程参数,为了提升操作便利性,其定义了两个枚举作为索引:

enum FrustumSide
{RIGHT = 0,		// The RIGHT side of the frustumLEFT = 1,		// The LEFT	 side of the frustumBOTTOM = 2,		// The BOTTOM side of the frustumTOP = 3,		// The TOP side of the frustumBACK = 4,		// The BACK	side of the frustumFRONT = 5		// The FRONT side of the frustum
};// 平面方程的参数索引
enum PlaneData
{A = 0,				// The X value of the plane's normalB = 1,				// The Y value of the plane's normalC = 2,				// The Z value of the plane's normalD = 3				// The distance the plane is from the origin
};

函数的具体实现在文件Frustum.cpp中,我们先看最基础的判断点是否在视锥体内:

bool OvRendering::Data::Frustum::PointInFrustum(float x, float y, float z) const
{for (int i = 0; i < 6; i++){if (m_frustum[i][A] * x + m_frustum[i][B] * y + m_frustum[i][C] * z + m_frustum[i][D] <= 0){return false;}}return true;
}

定义视锥体的面法线都是朝外的,如果点在视锥体内,点到6个面的距离必须全部小于0。进一步判断球体是否完全在视锥体内,距离必须小于半径的负数。
最后分析一下CalculateFrustum,它是根据一个视图投影矩阵反向构建一个视锥体,具体公式怎么来的可以参考这篇文章,里面将的特别详细:
Fast Extraction of Viewing Frustum Planes from the World View-Projection Matrix
  其本身的代码没啥好说的,无非就是公式的翻译。

这篇关于【Overload游戏引擎分析】从视图投影矩阵提取视锥体及overload对视锥体的封装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180681

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

国产游戏崛起:技术革新与文化自信的双重推动

近年来,国产游戏行业发展迅猛,技术水平和作品质量均得到了显著提升。特别是以《黑神话:悟空》为代表的一系列优秀作品,成功打破了过去中国游戏市场以手游和网游为主的局限,向全球玩家展示了中国在单机游戏领域的实力与潜力。随着中国开发者在画面渲染、物理引擎、AI 技术和服务器架构等方面取得了显著进展,国产游戏正逐步赢得国际市场的认可。然而,面对全球游戏行业的激烈竞争,国产游戏技术依然面临诸多挑战,未来的

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

数据视图(AngularJS)

<!DOCTYPE html><html ng-app="home.controller"><head><meta charset="utf-8"><title>数据视图</title><link href="page/common/css/bootstrap.min.css" rel="stylesheet"><script src="page/common/js/angular.js"></

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in