word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型)

本文主要是介绍word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

推荐领域(DSSM双塔模型):

https://www.cnblogs.com/wilson0068/p/12881258.html

 

word2vec 

word2vec笔记和实现

理解 Word2Vec 之 Skip-Gram 模型

上面这两个链接能让你彻底明白word2vec,不要搞什么公式,看完也是不知所云,也没说到本质.

目前用的比较多的都是Skip-gram模型

Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练模型(Skip-gram,CBOW),以及两种加速的方法(Hierarchical Softmax,Negative Sampling)

学习word2vec的skip-gram实现,除了skip-gram模型还有CBOW模型。
Skip-gram模式是根据中间词,预测前后词,CBOW模型刚好相反,根据前后的词,预测中间词。

那么什么是中间词呢?什么样的词才叫做前后词呢?

首先,我们需要定义一个窗口大小,在窗口里面的词,我们才有中间词和前后词的定义。一般这个窗口大小在5-10之间。
举个例子,我们设置窗口大小(window size)为2:

1|The|quick|brown|fox|jump|

那么,brown就是我们的中间词,Thequickfoxjump就是前后词。

我们知道,word2vec实际上就是一个神经网络(后面会解释),那么这样的数据,我们是以什么样的格式用来训练的呢?

可以看到,我们总是以中间词放在第一个位置,然后跟着我们的前后相邻词。可以看到,每一对词都是一个输入和一个输出组成的数据对(X,Y)。其中,X是feature,Y是label。

所以,我们训练模型之前,需要根据语料,整理出所有的像上面这样的输入数据用来训练

word2vec是一个神经网络

word2vec是一个简单的神经网络,有以下几个层组成:

  • 1个输入层

  • 1个隐藏层

  • 1个输出层

输入层输入的就是上面我们说的数据对的数字表示,输出到隐藏层。
隐藏层的神经网络单元的数量,其实就是我们所说的embedding size,只有为什么,我们后面简单计算一下就知道。需要注意的是,我们的隐藏层后面不需要使用激活函数
输出层,我们使用softmax操作,得到每一个预测结果的概率。

负采样

回到之前的问题:这些负样本是怎么影响损失的呢?

答案很简单:经过softmax之后,会得到正负样本的概率分布,而负样本对应的标签是0,所以计算出来的loss,在进行反向传播的时候,会尽量地使这些负样本的概率分布趋于0,相反的,会让正样本的概率分布趋于1

vocabulary的大小决定了我们的Skip-Gram神经网络将会拥有大规模的权重矩阵,所有的这些权重需要通过我们数以亿计的训练样本来进行调整,这是非常消耗计算资源的,并且实际中训练起来会非常慢。

负采样(negative sampling)解决了这个问题,它是用来提高训练速度并且改善所得到词向量的质量的一种方法。不同于原本每个训练样本更新所有的权重,负采样每次让一个训练样本仅仅更新一小部分的权重,这样就会降低梯度下降过程中的计算量。

当我们用训练样本 ( input word: "fox",output word: "quick") 来训练我们的神经网络时,“ fox”和“quick”都是经过one-hot编码的。如果我们的vocabulary大小为10000时,在输出层,我们期望对应“quick”单词的那个神经元结点输出1,其余9999个都应该输出0。在这里,这9999个我们期望输出为0的神经元结点所对应的单词我们称为“negative” word。

当使用负采样时,我们将随机选择一小部分的negative words(比如选5个negative words)来更新对应的权重。我们也会对我们的“positive” word进行权重更新(在我们上面的例子中,这个单词指的是”quick“)。

在论文中,作者指出指出对于小规模数据集,选择5-20个negative words会比较好,对于大规模数据集可以仅选择2-5个negative words。

回忆一下我们的隐层-输出层拥有300 x 10000的权重矩阵。如果使用了负采样的方法我们仅仅去更新我们的positive word-“quick”的和我们选择的其他5个negative words的结点对应的权重,共计6个输出神经元,相当于每次只更新[公式]个权重。对于3百万的权重来说,相当于只计算了0.06%的权重,这样计算效率就大幅度提高。

我们最终要的是隐层到输出层的权重矩阵作为每个词的embedding向量

item2vec

论文把Word2vec的Skipgram with Negative Sampling (SGNS)的算法思路迁移到基于物品的协同过滤(item-based CF)上,以物品的共现性作为自然语言中的上下文关系,构建神经网络学习出物品在隐空间的向量表示

 

MovieTaster-使用Item2Vec做电影推荐

https://blog.csdn.net/u011239443/article/details/82110770

MovieTaster-Open

https://github.com/lujiaying/MovieTaster-Open

目前的实现都是基于skip-gram,给定中心词计算上下文的概率,最后以每个词的中心词向量作为该词的向量表征

基于 Gensim 的 Word2Vec 实践(gensim自然语言python库)

https://www.cnblogs.com/pinard/p/7278324.html

用gensim学习word2vec

https://www.cnblogs.com/pinard/p/7278324.html

spark word2vec

spark实现:使用skip-gram模型,层序softmax加速训练

https://www.maiyewang.com/?p=14320

http://qiancy.com/2016/08/17/word2vec-hierarchical-softmax/

霍夫曼编码

https://zh.wikipedia.org/wiki/%E9%9C%8D%E5%A4%AB%E6%9B%BC%E7%BC%96%E7%A0%81

预处理:

如果是文本就分类

1:获取词典

2:子采样,去掉高频词。可以降低词典大小,以及提升低频次的表示精度

这篇关于word2vec 两个模型,两个加速方法 负采样加速Skip-gram模型 层序Softmax加速CBOW模型 item2vec 双塔模型 (DSSM双塔模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141190

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那