word2cev简单介绍 Word2Vec是一种用于学习词嵌入(word embeddings)的技术,旨在将单词映射到具有语义关联的连续向量空间。Word2Vec由Google的研究员Tomas Mikolov等人于2013年提出,它通过无监督学习从大规模文本语料库中学习词汇的分布式表示。目前Word2Vec有两种主要模型:Skip-gram和Continuous Bag of Words (
给定一段用于训练的文本语料,再选定某段长度(窗口)作为研究对象,使用上下文词汇预测目标词汇。 假设我们给定的训练语料只有一句话:Hope can set you free(愿你自由成长),窗口大小为3,因此模型的第一个训练样本来自Hope can set,因为是CBOW模式,所以将使用Hope和set作为输入,can作为输出,在模型训练时, Hope,can,set等词汇都使用它们的one-ho