中文词向量:使用pytorch实现CBOW

2023-10-06 12:31

本文主要是介绍中文词向量:使用pytorch实现CBOW,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        整个项目和使用说明地址:链接:https://pan.baidu.com/s/1my30wyqOk_WJD0jjM7u4TQ 
                                                   提取码:xxe0 

        关于词向量的理论基础和基础模型都看我之前的文章。里面带有论文和其他博客链接。可以系统学习关于词向量的知识。

之前已经使用numpy手动实现skip-gram,现在使用pytorch框架实现CBOW
这是pytorch官网的CBOW案例的修改,简单明了,没有涉及底层代码,没有层次优化or负采样优化等问题。这里直接使用pytorch实现并且做了结果可视化。

​​​​​​中文词向量:word2vec之skip-gram实现(不使用框架实现词向量模型)_Richard_Kim的博客-CSDN博客

         这一次可以使用完整语料进行训练,不用担心内存爆炸问题,使用了cuda加速。

实验原理还是原来那样。

1. 项目结构

      

 2. 需要的依赖:pytorch,numpy,matplotlib,sklearn,tqdm,jieba。

 3. 中文乱码问题同上面的skip-gram一样

 4.运行

        我只设置了100维,没有像skip-gram设置了300维

中文语料运行结果

完整代码 

#!/usr/bin/endimension python
# -#-coding:utf-8 -*-
# author:by ucas iie 魏兴源
# datetime:2021/11/07 16:45:21
# software:PyCharm"""之前已经使用numpy手动实现skip-gram,现在使用pytorch框架实现CBOW这是pytorch官网的CBOW案例的修改,简单明了,没有涉及底层代码,没有层次优化or负采样优化等问题地址:https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html?highlight=cbow
"""
import jieba
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from tqdm import tqdm, trange# 初始化矩阵
torch.manual_seed(1)# 加载停用词词表
def load_stop_words():"""停用词是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词"""with open('data/stopwords.txt', "r", encoding="utf-8") as f:return f.read().split("\n")# 加载文本,切词
def cut_words():stop_words = load_stop_words()with open('data/zh.txt', encoding='utf8') as f:allData = f.readlines()result = []for words in allData:c_words = jieba.lcut(words)result.append([word for word in c_words if word not in stop_words])return result# 用一个集合存储所有的词
wordList = []
# 调用切词方法
data = cut_words()
count = 0
for words in data:for word in words:if word not in wordList:wordList.append(word)
print("wordList=", wordList)raw_text = wordList
print("raw_text=", raw_text)# 超参数
learning_rate = 0.001
# 放cuda或者cpu里
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 上下文信息,即涉及文本的前n个和后n个
context_size = 2
# 词嵌入的维度,即一个单词用多少个浮点数表示比如 the=[10.2323,12.132133,4.1219774]...
embedding_dim = 100
epoch = 10def make_context_vector(context, word_to_ix):idxs = [word_to_ix[w] for w in context]return torch.tensor(idxs, dtype=torch.long)# 把所有词集合转成dict
vocab = set(raw_text)
vocab_size = len(vocab)word_to_idx = {word: i for i, word in enumerate(vocab)}
idx_to_word = {i: word for i, word in enumerate(vocab)}# cbow那个词表,即{[w1,w2,w4,w5],"label"}这样形式
data = []
for i in range(2, len(raw_text) - 2):context = [raw_text[i - 2], raw_text[i - 1],raw_text[i + 1], raw_text[i + 2]]target = raw_text[i]data.append((context, target))print(data[:5])class CBOW(nn.Module):def __init__(self, vocab_size, embedding_dim):super(CBOW, self).__init__()self.embeddings = nn.Embedding(vocab_size, embedding_dim)self.proj = nn.Linear(embedding_dim, 128)self.output = nn.Linear(128, vocab_size)def forward(self, inputs):embeds = sum(self.embeddings(inputs)).view(1, -1)out = F.relu(self.proj(embeds))out = self.output(out)nll_prob = F.log_softmax(out, dim=-1)return nll_prob# 模型在cuda训练
model = CBOW(vocab_size, embedding_dim).to(device)
# 优化器
optimizer = optim.SGD(model.parameters(), lr=0.001)
# 存储损失的集合
losses = []
"""负对数似然损失函数,用于处理多分类问题,输入是对数化的概率值。对于包含N NN个样本的batch数据 D ( x , y ) D(x, y)D(x,y),x xx 是神经网络的输出,进行了归一化和对数化处理。y yy是样本对应的类别标签,每个样本可能是C种类别中的一个。
"""
loss_function = nn.NLLLoss()for epoch in trange(epoch):total_loss = 0for context, target in tqdm(data):# 把训练集的上下文和标签都放到GPU中context_vector = make_context_vector(context, word_to_idx).to(device)target = torch.tensor([word_to_idx[target]]).cuda()# print("context_vector=", context_vector)# 梯度清零model.zero_grad()# 开始前向传播train_predict = model(context_vector).cuda()  # 这里要从cuda里取出,不然报设备不一致错误loss = loss_function(train_predict, target)# 反向传播loss.backward()# 更新参数optimizer.step()total_loss += loss.item()losses.append(total_loss)
print("losses-=", losses)# 测试一下,用['present', 'food', 'can', 'specifically']这个上下预测一下模型,正确答案是‘surplus’
context = ['粮食', '出现', '过剩', '恰好']
# 这个变量要放到gpu中,不然又要报设备不一致错误,因为只有把这个数据 同cuda里训练好的数据比较,再能出结果。。很好理解吧
context_vector = make_context_vector(context, word_to_idx).to(device)
# 预测的值
predict = model(context_vector).data.cpu().numpy()
print('Raw text: {}\n'.format(' '.join(raw_text)))
print('Test Context: {}\n'.format(context))
max_idx = np.argmax(predict)
# 输出预测的值
print('Prediction: {}'.format(idx_to_word[max_idx]))# 获取词向量,这个Embedding就是我们需要的词向量,他只是一个模型的一个中间过程
print("CBOW embedding'weight=", model.embeddings.weight)
W = model.embeddings.weight.cpu().detach().numpy()# 生成词嵌入字典,即{单词1:词向量1,单词2:词向量2...}的格式
word_2_vec = {}
for word in word_to_idx.keys():# 词向量矩阵中某个词的索引所对应的那一列即为所该词的词向量word_2_vec[word] = W[word_to_idx[word], :]
print("word2vec=", word_2_vec)"""待转换类型的PyTorch Tensor变量带有梯度,直接将其转换为numpy数据将破坏计算图,因此numpy拒绝进行数据转换,实际上这是对开发者的一种提醒。如果自己在转换数据时不需要保留梯度信息,可以在变量转换之前添加detach()调用。
"""pca = PCA(n_components=2)
principalComponents = pca.fit_transform(W)# 降维后在生成一个词嵌入字典,即即{单词1:(维度一,维度二),单词2:(维度一,维度二)...}的格式
word2ReduceDimensionVec = {}
for word in word_to_idx.keys():word2ReduceDimensionVec[word] = principalComponents[word_to_idx[word], :]# 将生成的字典写入到文件中,字符集要设定utf8,不然中文乱码
with open("CBOW_ZH_wordvec.txt", 'w', encoding='utf-8') as f:for key in word_to_idx.keys():f.write('\n')f.writelines('"' + str(key) + '":' + str(word_2_vec[key]))f.write('\n')# 将词向量可视化
plt.figure(figsize=(20, 20))
# 只画出1000个,太多显示效果很差
count = 0
for word, wordvec in word2ReduceDimensionVec.items():if count < 1000:plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号,否则负号会显示成方块plt.scatter(wordvec[0], wordvec[1])plt.annotate(word, (wordvec[0], wordvec[1]))count += 1
plt.show()

 QQ:530193235

这篇关于中文词向量:使用pytorch实现CBOW的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/153061

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本