AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

本文主要是介绍AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

在深度学习领域,优化算法是至关重要的一部分。其中,随机梯度下降法(Stochastic Gradient Descent,SGD)是最为常用且有效的优化算法之一。本篇将介绍SGD的背景和在深度学习中的重要性,解释SGD相对于传统梯度下降法的优势和适用场景,并提供详细的示例说明。

1. SGD背景和重要性

随机梯度下降法是一种优化算法,用于训练机器学习模型。在深度学习中,通过最小化损失函数来优化模型参数,SGD是实现这一目标的关键工具之一。具体而言,SGD通过计算每个训练样本的梯度来更新模型参数,从而逐步优化模型。

SGD在深度学习中的重要性体现在以下几个方面:

  • 速度快:相较于传统的梯度下降法,SGD 的计算速度更快。由于每次更新仅考虑一个训练样本,使得SGD更适用于大规模数据集和复杂模型。
  • 能够适应在线学习:SGD适用于在线学习场景,能够实现即时更新模型参数,应对数据流的变化。
  • 避免陷入局部极小值:由于SGD每次更新都是基于单个样本,有助于跳出局部极小值,更有可能找到全局最优解。

2. SGD相对于传统梯度下降法的优势

2.1 速度更快

传统梯度下降法在更新模型参数时需要计算所有训练样本的梯度,这一过程效率较低。相反,SGD每次仅计算单个样本的梯度,使得更新速度更快,适用于大规模数据集和复杂模型。

2.2 适应在线学习

传统梯度下降法通常需要将整个数据集加载到内存中进行计算,不适合在线学习场景。而SGD每次只考虑一个样本,可以实现即时数据更新,适应数据流的变化。

2.3 避免陷入局部极小值

传统梯度下降法容易陷入局部极小值,使得无法达到全局最优解。而SGD每次更新只考虑单个样本,有助于跳出局部极小值,更有可能找到全局最优解。

3. SGD适用场景

SGD适用于以下场景:

  • 大规模数据集:由于SGD每次仅计算单个样本的梯度,适用于大规模数据集。
  • 复杂模型:SGD速度快,适合训练复杂模型。
  • 在线学习:SGD适应数据流的变化,适合在线学习场景。
  • 避免陷入局部极小值:SGD有助于跳出局部极小值,更有可能找到全局最优解。

4. 详细示例说明

为了更好地理解SGD的工作原理,我们以一个简单的线性回归问题为例进行说明。假设我们有一个线性回归模型 y = w x + b y = wx + b y=wx+b,我们的目标是通过训练数据集找到最佳的参数 w w w b b b

首先,我们定义损失函数为均方误差(Mean Squared Error,MSE):
MSE = 1 n ∑ i = 1 n ( y i − ( w x i + b ) ) 2 \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2 MSE=n1i=1n(yi(wxi+b))2
其中, n n n 为样本数量, y i y_i yi x i x_i xi 分别为第 i i i 个样本的真实标签和特征。

接下来,我们使用SGD来优化我们的模型。SGD的更新规则为:
w = w − η ∂ MSE ∂ w w = w - \eta \frac{\partial \text{MSE}}{\partial w} w=wηwMSE
b = b − η ∂ MSE ∂ b b = b - \eta \frac{\partial \text{MSE}}{\partial b} b=bηbMSE
其中, η \eta η 为学习率, ∂ MSE ∂ w \frac{\partial \text{MSE}}{\partial w} wMSE ∂ MSE ∂ b \frac{\partial \text{MSE}}{\partial b} bMSE 分别为损失函数相对于 w w w b b b 的偏导数。

我们通过遍历训练数据集,对每个样本计算损失函数的梯度,并更新参数 w w w b b b。通过多次迭代,逐步优化模型。

5. 结语

随机梯度下降法是深度学习中一种重要且高效的优化算法,具有速度快、能够适应在线学习、避免陷入局部极小值等优势。通过本文的介绍和示例说明,希望读者能够更好地理解SGD的原理和应用场景,为深度学习的学习和实践提供帮助。

这篇关于AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135522

相关文章

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实