基于粒子群优化算法的六自由度机械臂三维空间避障规划

2024-08-28 21:44

本文主要是介绍基于粒子群优化算法的六自由度机械臂三维空间避障规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:本研究旨在解决机械臂在复杂环境中避障路径规划的问题。本文提出了一种利用粒子群优化算法(PSO)进行机械臂避障规划的方法,通过建立机械臂的运动模型,将避障问题转化为优化问题。PSO算法通过模拟群体中个体的社会行为和个体行为来寻找到最佳路径,确保机械臂在避开障碍物的同时,能够高效地到达目标位置。研究表明,基于PSO算法的避障规划在收敛速度和路径优化上具有良好的性能,能够有效提高机械臂的操作效率和安全性。此方法在工业机器人、医疗设备和服务机器人等领域具有广泛的应用前景。

关键词:粒子群优化算法,六自由度机械臂,三维空间,避障规划,路径优化,机器人技术

参考文献:

[1]朱战霞,靖飒,仲剑飞,等.基于碰撞检测的空间冗余机械臂避障路径规划[J].西北工业大学学报, 2020, 38(1)
:8.DOI:CNKI:SUN:XBGD.0.2020-01-023.

[2]马宇豪.六自由度机械臂避障轨迹规划及控制算法研究[D].中国科学院大学[2024-06-08].

图1 六自由度机械臂三维空间避障规划示意图

  1. 基于粒子群优化算法的三维避障路径规划

1.1 路径规划问题描述

路径规划是指在已知环境信息的情况下,确定从起始点到目标点的最优路径,并且该路径不能与环境中的障碍物相交。具体来说,假设环境内存在多个障碍物,路径规划的目标是找到一条从起始点到目标点的最短路径,同时确保该路径避开所有障碍物。

如图2所示,在一个三维空间中,有若干障碍物分布在路径上。需要通过路径规划算法计算出一条从起始点到目标点的最短路径,并且该路径不与任何障碍物发生碰撞。这种路径规划在机器人导航、自动驾驶和工业自动化等领域中具有重要应用。图1展示了一个典型的三维空间避障路径规划问题。

图2 三维空间避障路径规划问题描述

1.2 粒子群优化算法求解

粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,模拟了鸟群觅食等自然现象,通过个体间的信息共享来寻找最优解。该算法具有简单、易实现和全局搜索能力强等优点,非常适合用于复杂环境下的路径规划问题。

PSO算法基本原理

  1. 粒子表示:在路径规划问题中,每个粒子代表一条从起始点到目标点的路径。粒子的位置信息由路径上的多个节点坐标构成。
  2. 初始化:在搜索空间内随机初始化一组粒子,每个粒子包含位置和速度两个属性。初始位置对应于起始点到目标点的一条随机路径。
  3. 适应度函数:适应度函数用于评估每个粒子的路径质量。路径长度和与障碍物的距离是常见的评价指标。适应度函数通常设定为路径长度的加权和,若路径与障碍物相交则增加惩罚项。
  4. 更新速度和位置
  • 速度更新公式:其中,为第i个粒子在第t次迭代的速度;w为惯性权重;c1和c2为加速常数;r1和r2为随机数;为粒子自身历史最优位置;为全局最优位置。位置更新公式:
  1. 个体最优和全局最优更新:在每次迭代中,更新每个粒子的个体最优位置和整个种群的全局最优位置,以便在后续迭代中指导粒子向更优的方向移动。
  2. 终止条件:算法迭代达到预设的最大次数或全局最优值的改进小于预设阈值时,终止迭代。

具体求解步骤

  1. 初始化粒子群:在三维空间内随机生成多个粒子,每个粒子表示一条从起始点到目标点的路径。
  2. 计算适应度值:对每个粒子,计算其路径的适应度值,包括路径长度和是否与障碍物相交等因素。
  3. 迭代优化
  • 根据速度和位置更新公式,更新每个粒子的速度和位置。计算每个粒子的适应度值,更新个体最优位置和全局最优位置。
  1. 路径输出:算法迭代终止后,输出全局最优粒子所代表的路径,即为从起始点到目标点的最优避障路径。

通过上述步骤,粒子群优化算法可以有效求解三维空间内的机械臂避障路径规划问题,实现从起始点到目标点的最短路径规划,并确保路径不与障碍物相交。最终,笔者基于上述的粒子群优化算法编写了MATLB代码,其三维避障路径规划实验结果如图3所示。

图3 基于粒子群优化算法的三维避障路径规划实验结果图

  1. 六自由度机械臂三维空间避障仿真结果

图4 六自由度机械臂三维空间避障



 

  1. 六自由度机械臂关节信息结果图

各关节角度变化

各关节速度变化

各关节加速度变化

最后,有相关需求欢迎通过公众号“320科技工作室”与我们联络。

这篇关于基于粒子群优化算法的六自由度机械臂三维空间避障规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115971

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6