行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo)

本文主要是介绍行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Yolov5+SlowFast+deepsort

一、简介

YoloV5+SlowFast+DeepSort 是一个结合了目标检测、动作识别和目标跟踪技术的视频处理框架。这一集成系统利用了各自领域中的先进技术,为视频监控、体育分析、人机交互等应用提供了一种强大的解决方案。

1. 组件说明:

  • YoloV5: Yolo(You Only Look Once)是一个流行的实时目标检测系统,其第五代版本YoloV5通过深度学习模型快速准确地识别和定位图像中的多个对象。它适用于实时场景,因为可以快速处理图像并给出高精度的结果。
  • SlowFast: 这是一个视频动作识别网络,由 Facebook AI 研究院开发。它通过同时使用两个处理流——一个慢速流捕捉空间特征,一个快速流捕捉时间动态——来识别视频中的动作。这种结构使得SlowFast在处理复杂动作时能够更好地理解视频内容。
  • DeepSort: DeepSort 是一个轻量级的跟踪算法,它在简单的Sort(Simple Online and Realtime Tracking)算法基础上增加了深度学习特征。这使得DeepSort在保持跟踪对象的同时,能够有效处理遮挡和交互场景。

2. 技术运用:

在 YoloV5+SlowFast+DeepSort 集成系统中:

  • YoloV5 负责实时检测视频帧中的对象,为后续的动作识别和目标跟踪提供必要的前处理。
  • SlowFast 接收YoloV5的输出,即识别出的对象,并对这些对象执行动作识别。通过分析对象随时间的动态变化,SlowFast能够判断对象正在进行的动作。
  • DeepSort 则在此基础上进行目标跟踪,通过连续帧中的动作和位置变化,持续跟踪各个对象,即使在复杂场景中也能维持较高的跟踪准确性。

3. 比单独使用SlowFast的优点:

  • 实时性和综合分析:相比于单独的SlowFast,集成系统通过YoloV5提供实时目标检测,可以在每一帧中都识别和标注出目标,而不仅仅是动作识别。这对于需要实时反应和处理的应用来说,提供了更大的灵活性和实用性。
  • 动作和目标的精确跟踪:通过DeepSort,系统不仅可以识别动作,还可以精确地跟踪动作的执行者,即使在目标快速移动或部分遮挡的情况下也能持续追踪。这对于需要长时间监控特定个体或对象的场景尤为重要。

4. 意义:

这种集成的技术方案极大地扩展了视频分析的应用范围,使其不仅限于简单的动作识别,还包括了复杂环境中的实时多目标检测与追踪。对于安全监控、体育比赛分析、交互式媒体等领域,YoloV5+SlowFast+DeepSort 提供了一个高效、精确的工具,能够满足这些领域对实时性、准确性和鲁棒性的高要求。

二、环境配置

环境配置见:行为识别实战第一天——Slowfast行为识别部署-CSDN博客

三、文件准备

下载下面文件备用:

文件分享

 GitHub - Whiffe/yolov5-slowfast-deepsort-PytorchVideo

将 yolov5-master.zip放在yolov5-file,

将SLOWFAST_8x8_R50_DETECTION.pyth放在slowfast_file,

将yolov5l6.pt放在根目录yolov5-slowfast-deepsort-PytorchVideo-main。

 

sudo cp yolov5-file/yolov5-master.zip /home/ps/.cache/torch/hub/master.zipsudo cp slowfast_file/SLOWFAST_8x8_R50_DETECTION.pyth /home/ps/.cache/torch/hub/checkpoints/SLOWFAST_8x8_R50_DETECTION.pyth

四、运行

1.mp4 放在根目录下,

python yolo_slowfast.py --input 1.mp4

最后结果视频保存在output.mp4.

配置好的完整代码分享,100%可以运行:

 https://download.csdn.net/download/qq_34717531/89682626?spm=1001.2014.3001.5503

这篇关于行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112495

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

springboot实战学习(1)(开发模式与环境)

目录 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 (3)前端 二、开发模式 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 Validation:做参数校验Mybatis:做数据库的操作Redis:做缓存Junit:单元测试项目部署:springboot项目部署相关的知识 (3)前端 Vite:Vue项目的脚手架Router:路由Pina:状态管理Eleme

Java基础回顾系列-第二天-面向对象编程

面向对象编程 Java类核心开发结构面向对象封装继承多态 抽象类abstract接口interface抽象类与接口的区别深入分析类与对象内存分析 继承extends重写(Override)与重载(Overload)重写(Override)重载(Overload)重写与重载之间的区别总结 this关键字static关键字static变量static方法static代码块 代码块String类特

Unable to instantiate Action, goodsTypeAction, defined for 'goodsType_findAdvanced' in namespace '/

报错: Unable to instantiate Action, goodsTypeAction,  defined for 'goodsType_findAdvanced' in namespace '/'goodsTypeAction......... Caused by: java.lang.ClassNotFoundException: goodsTypeAction.......

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的