行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo)

本文主要是介绍行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Yolov5+SlowFast+deepsort

一、简介

YoloV5+SlowFast+DeepSort 是一个结合了目标检测、动作识别和目标跟踪技术的视频处理框架。这一集成系统利用了各自领域中的先进技术,为视频监控、体育分析、人机交互等应用提供了一种强大的解决方案。

1. 组件说明:

  • YoloV5: Yolo(You Only Look Once)是一个流行的实时目标检测系统,其第五代版本YoloV5通过深度学习模型快速准确地识别和定位图像中的多个对象。它适用于实时场景,因为可以快速处理图像并给出高精度的结果。
  • SlowFast: 这是一个视频动作识别网络,由 Facebook AI 研究院开发。它通过同时使用两个处理流——一个慢速流捕捉空间特征,一个快速流捕捉时间动态——来识别视频中的动作。这种结构使得SlowFast在处理复杂动作时能够更好地理解视频内容。
  • DeepSort: DeepSort 是一个轻量级的跟踪算法,它在简单的Sort(Simple Online and Realtime Tracking)算法基础上增加了深度学习特征。这使得DeepSort在保持跟踪对象的同时,能够有效处理遮挡和交互场景。

2. 技术运用:

在 YoloV5+SlowFast+DeepSort 集成系统中:

  • YoloV5 负责实时检测视频帧中的对象,为后续的动作识别和目标跟踪提供必要的前处理。
  • SlowFast 接收YoloV5的输出,即识别出的对象,并对这些对象执行动作识别。通过分析对象随时间的动态变化,SlowFast能够判断对象正在进行的动作。
  • DeepSort 则在此基础上进行目标跟踪,通过连续帧中的动作和位置变化,持续跟踪各个对象,即使在复杂场景中也能维持较高的跟踪准确性。

3. 比单独使用SlowFast的优点:

  • 实时性和综合分析:相比于单独的SlowFast,集成系统通过YoloV5提供实时目标检测,可以在每一帧中都识别和标注出目标,而不仅仅是动作识别。这对于需要实时反应和处理的应用来说,提供了更大的灵活性和实用性。
  • 动作和目标的精确跟踪:通过DeepSort,系统不仅可以识别动作,还可以精确地跟踪动作的执行者,即使在目标快速移动或部分遮挡的情况下也能持续追踪。这对于需要长时间监控特定个体或对象的场景尤为重要。

4. 意义:

这种集成的技术方案极大地扩展了视频分析的应用范围,使其不仅限于简单的动作识别,还包括了复杂环境中的实时多目标检测与追踪。对于安全监控、体育比赛分析、交互式媒体等领域,YoloV5+SlowFast+DeepSort 提供了一个高效、精确的工具,能够满足这些领域对实时性、准确性和鲁棒性的高要求。

二、环境配置

环境配置见:行为识别实战第一天——Slowfast行为识别部署-CSDN博客

三、文件准备

下载下面文件备用:

文件分享

 GitHub - Whiffe/yolov5-slowfast-deepsort-PytorchVideo

将 yolov5-master.zip放在yolov5-file,

将SLOWFAST_8x8_R50_DETECTION.pyth放在slowfast_file,

将yolov5l6.pt放在根目录yolov5-slowfast-deepsort-PytorchVideo-main。

 

sudo cp yolov5-file/yolov5-master.zip /home/ps/.cache/torch/hub/master.zipsudo cp slowfast_file/SLOWFAST_8x8_R50_DETECTION.pyth /home/ps/.cache/torch/hub/checkpoints/SLOWFAST_8x8_R50_DETECTION.pyth

四、运行

1.mp4 放在根目录下,

python yolo_slowfast.py --input 1.mp4

最后结果视频保存在output.mp4.

配置好的完整代码分享,100%可以运行:

 https://download.csdn.net/download/qq_34717531/89682626?spm=1001.2014.3001.5503

这篇关于行为识别实战第二天——Yolov5+SlowFast+deepsort: Action Detection(PytorchVideo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112495

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统