Pandas使用SQLite3实战

2025-04-02 15:50
文章标签 pandas sqlite3 实战 使用

本文主要是介绍Pandas使用SQLite3实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学...

让数据分析更高效!用 Pandas 直接读写 SQLite3 数据,告别手动拼接 SQL 语句!

1 环境准备

确保已安装 pandas 和 sqlite3(前者需单独安装,后者是 python 内置):

pip install pandas

2 从 SQLite3 读取数据到 DataFrame

基础用法:读取整个表

import pandas as pd
import sqlite3

# 连接到数据库
conn = sqlite3.connect('test.db')

# 读取 users 表到 DataFrame
df = pd.read_sql('SELECT * FROM users', conn)
print(df.head())  # 查看前5行数据

# 关闭连接
conn.close()

高级用法:筛选和聚合

query = '''
    SELECT 
        name, 
        AVG(age) as avg_age   -- 计算平均年龄
    FROM users 
    WHERE age > 20 
    GROUP BY name
'''
df = pd.read_sql(query, China编程conn)
print(df)

3 将 DataFrame 写入 SQLite3

基本写入(全量覆盖)

# 创建一个示例 DataFrame
data = {
    'name': ['David', 'Eve'],
    'age': [28, 32],
    'email': ['david@test.com', 'eve@test.com']
}
df = pd.DataFrame(data)

# 写入到 users 表(全量覆盖)
df.to_sql(
    name='users',     # 表名
    con=conn,         # 数据库连接
    if_exists='replace',  # 如果表存在,直接替换(慎用!)
    index=False       # 不保存 DataFrame 的索引列
)
conn.commit()

追加数据(增量写入)

df.to_sql(
    name='users',
    con=conn,
    if_exists='append',  # 追加到现有表
    index=False
)
conn.commit()

4 实战场景:数据清洗 + 入库

假设有一个 CSV 文件 dirty_data.csv,需要清洗后存入 SQLite3:

id,name,age,email
1, Alice,30,alice@example.com
2, Bob , invalid, bob@example.com  # 错误年龄
3, Charlie,35,missing_email

步骤 1:用 Pandas 清洗数据

# 读取 CSV
df = pd.read_csv('dirty_data.csv')

# 清洗操作
df['age'] = pd.to_numeric(df['age'], errors='coerce')  # 无效年龄转为 NaN
df = df.dropna(subset=['age'])                        # 删除年龄无效的行
df['email'] = df['email'].fillna('unknown')            # 填充缺失邮箱
df['name'] = df['name'].str.strip()                   # 去除名字前后空格

print(df)

步骤 2:写入数据库

with sqlite3.connect('test.db') as conn:
    # 写入新表 cleaned_users
    df.to_sql('cleaned_users', conn, index=False, iChina编程f_exists='replace')
    
    # 验证写入结果
    df_check = pd.read_sql('SELECT * FROM cleaned_users', conn)
    print(df_check)

5 性能优化:分块写入大数据

处理超大型数据时(如 10 万行),避免一次性加载到内存:

# 分块读取 CSV(每次读 1 万行)
chunk_iter = pd.read_csv('big_data.csv', chunksize=1000)

with sqlite3.connect('big_db.db') as conn:
    for chunk in chunk_iter:
        # 对每个块做简单处理
        chunk['timestamp'] = pd.to_datetime(chunk['timestamp'])
        # 分块写入数据库
        chunk.to_sql(
            name='big_table',
            con=conn,
            if_exists='append',  # 追加模式
            index=False
        )
    print("全部写入完成!")

6 高级技巧:直接执行 SQL 操作

Pandas 虽然强大,但复杂查询仍需直接操作 SQL:

# 创建临时 DataFrame
df = pd.DataFrame({'product': ['A', 'B', 'C'], 'price': [10, 200, 150]})

# 写入 products 表
df.to_sql('products', conn, index=False, if_exists='replace'python)

# 执行复杂查询(连接 users 和 orders 表)
query = '''
    SELECT 
        u.name,
        p.product,
        p.price
    FROM users u
    JOIN orders o ON u.id = o.user_id
    JOIN products p ON o.product_id = p.id
    WHERE p.price > 10
'''
result_df = pd.read_sql(query, conn)
print(result_df)

7 避坑指南

数据类型匹配问题

  • SQLite 默认所有列为 TEXT,但 Pandas 会自动推断类型。
  • 写入时可用 dtype 参数手动指定类型:
    df.to_sql('table', conn, dtype={'age': 'INTEGER', 'price': 'REAL'})
    
  • 主键和索引

    • Pandas 不会自动创建主键或索引,需提前用 SQL 语句定义表结构。
  • 性能瓶颈

    • 写入大量数据时,关闭事务自动提交可提速:
      with conn:
          df.to_sql(...)  # 使用上下文管理器自动提交
      

8 总结

通过 Pandas + SQLite3 的组合,你可以:
✅ 快速导入/导出数据:告别手动拼接 SQL 语句。
✅ 无缝衔接数据分析:清洗、计算、可视化后直接入库。
✅ 处理海量数据:分块读写避免内存爆炸。

下一步建议

  • 尝试将 Excel/CSV 文件自编程China编程动同步到 SQLite3 数据库。
  • 学习使用 sqlalchemy 库增强 SQL 操作能力。

到此这篇关于Pandas使用SQLite3实战的文章就介绍到这了,更多相关Pandas使用SQLite3内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)! 

这篇关于Pandas使用SQLite3实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154061

相关文章

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子