Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案

本文主要是介绍Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最终效果

本文分享,ES千万级向量检索耗时分钟级的慢查询分析方法,并分享优化方案。通过借助内存加速,把查询延迟从分钟级降低到毫秒级别

方案缺点是对服务器内存有比较大的依赖!

主要问题:剔除knn插件,此插件在做ANN检索时,构建查询语句耗时长。

1.背景

1.1 资源背景

es.8.8版本

2个es节点 ; 堆内存31g; 服务器内存资源充足(100+); HDD磁盘

该优化是在forcemerge之后做的工作,如果不做forcemerge,效果会更差。即使做完forcemerge,还是不能满足查询延迟要求。

1.2 数据背景

1799w数据,向量768维度。(不带副本300G 10个分片)

在数据中做ANN检索。检索语句在2.1中。

knn 参数:"num_candidates": 100

耗时长,无响应结果,时间大于1分钟。

  1. 问题定位排查

2.1 检索语句

为了方便查阅,去掉了向量的数据。

GET tilake_vectors-000003/_search?max_concurrent_shard_requests=30&human=true
{"profile": true, "knn": {"field": "content_vector","filter": {"bool": {"must": [{"terms": {"session_id": ["institute"]}},{"term": {"vectorization_method": "title+content"}}]}},"query_vector": [],"k": 10,"num_candidates": 10},"size": 0
}

2.2 检索语句profile结果

{"took": 10006,"timed_out": false,"_shards": {"total": 2,"successful": 2,"skipped": 0,"failed": 0},"hits": {"total": {"value": 10,"relation": "eq"},"max_score": null,"hits": []},"profile": {"shards": [{"id": "[oooFp749QMWECSF0qyMaIA][tilake_vectors-000003][1]","dfs": {"statistics": {"type": "statistics","description": "collect term statistics","time": "6.9micros","time_in_nanos": 6923,"breakdown": {"term_statistics": 0,"collection_statistics": 0,"collection_statistics_count": 0,"create_weight": 4668,"term_statistics_count": 0,"rewrite_count": 0,"create_weight_count": 1,"rewrite": 0}},"knn": [{"query": [{"type": "DocAndScoreQuery","description": "DocAndScore[10]","time": "6.5micros","time_in_nanos": 6587,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 916,"match": 0,"next_doc_count": 10,"score_count": 10,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 524,"advance_count": 1,"count_weight_count": 0,"score": 1228,"build_scorer_count": 2,"create_weight": 1228,"shallow_advance": 0,"count_weight": 0,"create_weight_count": 1,"build_scorer": 2691}}],"rewrite_time": 9320075980,"collector": [{"name": "SimpleTopScoreDocCollector","reason": "search_top_hits","time": "10.4micros","time_in_nanos": 10460}]}]},"searches": [{"query": [{"type": "ConstantScoreQuery","description": "ConstantScore(ScoreAndDocQuery)","time": "49.4micros","time_in_nanos": 49494,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 46460,"shallow_advance": 0,"count_weight": 3034,"create_weight_count": 1,"build_scorer": 0},"children": [{"type": "KnnScoreDocQuery","description": "ScoreAndDocQuery","time": "2.1micros","time_in_nanos": 2115,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 754,"shallow_advance": 0,"count_weight": 1361,"create_weight_count": 1,"build_scorer": 0}}]}],"rewrite_time": 22921,"collector": [{"name": "EarlyTerminatingCollector","reason": "search_count","time": "54micros","time_in_nanos": 54011}]}],"aggregations": []},{"id": "[p4MgwgUtTSK6vmkayGHPKg][tilake_vectors-000003][0]","dfs": {"statistics": {"type": "statistics","description": "collect term statistics","time": "13.3micros","time_in_nanos": 13398,"breakdown": {"term_statistics": 0,"collection_statistics": 0,"collection_statistics_count": 0,"create_weight": 7433,"term_statistics_count": 0,"rewrite_count": 0,"create_weight_count": 1,"rewrite": 0}},"knn": [{"query": [{"type": "DocAndScoreQuery","description": "DocAndScore[10]","time": "10.4micros","time_in_nanos": 10449,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 771,"match": 0,"next_doc_count": 10,"score_count": 10,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 1204,"advance_count": 1,"count_weight_count": 0,"score": 1158,"build_scorer_count": 2,"create_weight": 2845,"shallow_advance": 0,"count_weight": 0,"create_weight_count": 1,"build_scorer": 4471}}],"rewrite_time": 10005101571,"collector": [{"name": "SimpleTopScoreDocCollector","reason": "search_top_hits","time": "10.8micros","time_in_nanos": 10837}]}]},"searches": [{"query": [{"type": "ConstantScoreQuery","description": "ConstantScore(ScoreAndDocQuery)","time": "55.7micros","time_in_nanos": 55704,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 53265,"shallow_advance": 0,"count_weight": 2439,"create_weight_count": 1,"build_scorer": 0},"children": [{"type": "KnnScoreDocQuery","description": "ScoreAndDocQuery","time": "3.2micros","time_in_nanos": 3271,"breakdown": {"set_min_competitive_score_count": 0,"match_count": 0,"shallow_advance_count": 0,"set_min_competitive_score": 0,"next_doc": 0,"match": 0,"next_doc_count": 0,"score_count": 0,"compute_max_score_count": 0,"compute_max_score": 0,"advance": 0,"advance_count": 0,"count_weight_count": 1,"score": 0,"build_scorer_count": 0,"create_weight": 2451,"shallow_advance": 0,"count_weight": 820,"create_weight_count": 1,"build_scorer": 0}}]}],"rewrite_time": 3431,"collector": [{"name": "EarlyTerminatingCollector","reason": "search_count","time": "28.5micros","time_in_nanos": 28514}]}],"aggregations": []}]}
}

2.3 问题发现

其中最耗时的是 rewrite_time, 总共耗时10s,这里的 rewrite阶段耗时为9.3s!

这里反复测试,不同的case,都是类似的现象。

经过排查发现,检索的过程中,只用knn检索,耗时短,加上ANN检索后,耗时变长。

我们使用到了knn插件做加速。通过对比测试,发现这个耗时长和用到的knn插件有关系。在做了修改,剔除掉knn插件后,耗时有好转,2到3s

但是偶尔也会慢7s

这里调整num_candidates 参数从10到100。耗时变长了很多

还是不满足需求,所以继续需要做优化验证。

3. 验证方案

猜想:还是耗时长。尝试使用预加载底层文件的方式,走内存加速。

验证注意事项:全程要考虑查询缓存的影响。对于es条件,相同的条件会命中缓存,在测试过程中,应该通过替换检索条件的内容,来避免查询缓存的影响。

3.1 尝试把es中的向量文件,做预加载

PUT /tilake_test_slow-000003/_settings
{"index": {"store": {"preload": ["vec", "vem", "vex"]}}
}

报错

{"error": {"root_cause": [{"type": "illegal_argument_exception","reason": "Can't update non dynamic settings [[index.store.preload]] for open indices [[tilake_test_slow/B5hiOiOZQwm8rE5yfHOcXw]]"}],"type": "illegal_argument_exception","reason": "Can't update non dynamic settings [[index.store.preload]] for open indices [[tilake_test_slow/B5hiOiOZQwm8rE5yfHOcXw]]"},"status": 400
}

3.2 需要先把索引关闭掉

POST tilake_test_slow-000003/_close

3.3 再执行修改预加载

PUT /tilake_test_slow-000003/_settings
{"index": {"store": {"preload": ["vec", "vem", "vex"]}}
}

3.4 再打开索引

POST tilake_test_slow-000003/_open

3.5 验证效果平均耗时100ms!

3.6 为什么预加载的是这几个文件?

不妨看看es 底层的文件找到对应索引的uuid

GET _cat/indices/tilake_test_slow-000003?v

根据id,可以进到es的底层存储目录中(es data目录,这里给一个示例:elasticsearch/data/indices/B5hiOiOZQwm8rE5yfHOcXw/1/index看到如下底层文件。其中有三个是hnswVectors相关的文件。es向量检索用的是hnsw算法,es存储向量就和几个相关。这块要熟悉lucene,知道这种底层文件都是什么用的三个是es8.x之后出现的内容)

3.7 内存的前后变化

操作前

操作后看到 buff/cache 增加4G

该设置并不会立即将所有相关文件加载到内存,而是在需要时才会进行预加载。因此,你可能需要在执行查询或重启节点后,才能看到内存使用的变化。

3.8 需要多少内存

以一个分片为例,该分片总大小为30G,以下是该分片全部的底层文件。其中和向量相关的文件有5.5G 。假设这些都需要加载到内存中,则为实际索引大小的五分之一。以我们的数据为例,我们累计1790W数据, 磁盘存储350G,不带副本。按照1:5的比例估算内存,则需要70G的内存空间为佳。

-rw-rw-r-- 1     68 Aug 21 14:53 _20b_0.doc
-rw-rw-r-- 1     68 Aug 21 14:53 _20b_0.pos
-rw-rw-r-- 1    29M Aug 21 14:53 _20b_0.tim
-rw-rw-r-- 1   283K Aug 21 14:53 _20b_0.tip
-rw-rw-r-- 1    265 Aug 21 14:53 _20b_0.tmd
-rw-rw-r-- 1   2.3M Aug 21 14:53 _20b_ES87BloomFilter_0.bfi
-rw-rw-r-- 1     99 Aug 21 14:53 _20b_ES87BloomFilter_0.bfm
-rw-rw-r-- 1    15K Aug 21 14:51 _20b.fdm
-rw-rw-r-- 1    24G Aug 21 14:51 _20b.fdt
-rw-rw-r-- 1   1.3M Aug 21 14:51 _20b.fdx
-rw-rw-r-- 1   4.7K Aug 21 16:35 _20b.fnm
-rw-rw-r-- 1    16M Aug 21 14:53 _20b.kdd
-rw-rw-r-- 1    45K Aug 21 14:53 _20b.kdi
-rw-rw-r-- 1    260 Aug 21 14:53 _20b.kdm
-rw-rw-r-- 1   280M Aug 21 14:53 _20b_Lucene90_0.doc
-rw-rw-r-- 1   222M Aug 21 14:53 _20b_Lucene90_0.dvd
-rw-rw-r-- 1   4.4K Aug 21 14:53 _20b_Lucene90_0.dvm
-rw-rw-r-- 1   421M Aug 21 14:53 _20b_Lucene90_0.pos
-rw-rw-r-- 1   204M Aug 21 14:53 _20b_Lucene90_0.tim
-rw-rw-r-- 1   2.7M Aug 21 14:53 _20b_Lucene90_0.tip
-rw-rw-r-- 1   2.2K Aug 21 14:53 _20b_Lucene90_0.tmd
-rw-rw-r-- 1   5.4G Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vec
-rw-rw-r-- 1   129K Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vem
-rw-rw-r-- 1    79M Aug 21 16:35 _20b_Lucene95HnswVectorsFormat_0.vex
-rw-rw-r-- 1   7.7M Aug 21 14:52 _20b.nvd
-rw-rw-r-- 1    247 Aug 21 14:52 _20b.nvm
-rw-rw-r-- 1    815 Aug 21 16:35 _20b.si
-rw-rw-r-- 1    395 Aug 22 20:00 segments_6p
-rw-rw-r-- 1      0 Aug 21 11:30 write.lock

4. 注意事项

4.1 工作原理

当你配置 index.store.preload 时,Elasticsearch 会使用底层操作系统的文件系统缓存(通常是页缓存)将指定类型的文件(如 .vec、.vem、.vex)预加载到内存中。文件系统缓存是操作系统层面的一种机制,用于将磁盘上的数据读取到内存中,从而加快后续的访问速度。通过 preload,这些文件在第一次访问时会直接从内存而不是从磁盘读取,减少了磁盘I/O的延迟。

在 preload 配置下,Elasticsearch 会在查询时或者索引段被加载时,将指定文件类型的数据主动读取到内存中。这使得后续查询能够更快地访问这些数据,因为它们已经驻留在内存中,而无需进行磁盘读取。Elasticsearch 会利用这些预加载的数据来提高检索性能,尤其是在频繁访问的场景下,可以显著降低查询延迟。

4.2 内存限制

内存资源:由于 preload 会增加内存使用量,因此在配置时需要确保系统有足够的内存资源,以免影响整体性能。注意这些文件是被加载到了os cache上。占用的是服务器的内存。

也就是说,假如服务器的内存资源不够,此优化带来的收益是很小的,甚至有副作用。因为内存不足,可能会导致内存被不停的换入换出。

4.3 es 不要部署在容器中

es部署在容器中,会有各种限制,可能会看不到效果。主要是内存的影响。

持久化的东西放在容器中,会有很大的性能损失。

4.4 可能会存在第一次查询很慢的情况

预加载触发

  • 第一次对索引进行查询时,如果预加载的文件(如 .vec、.vem、.vex 文件)尚未被加载到内存中,Elasticsearch 需要从磁盘读取这些文件,并将它们加载到内存中。这会导致首次查询的响应时间较长,因为磁盘 I/O 操作通常比内存访问慢得多。

操作系统缓存

  • 即使你已经设置了 index.store.preload,实际的预加载动作是在首次访问时才会触发。如果系统刚刚启动或这些文件之前没有被访问过,那么操作系统还没有将它们缓存到内存中,因此第一次查询需要进行磁盘读取。

段文件加载

  • 当新的段文件生成(例如在写入数据或合并段时),这些新的段文件同样需要在首次访问时加载到内存中,这也可能导致第一次查询变慢。

解决方法,使用滚动索引,索引小一些。然后可以做forcemerge+触发查询加载。

5. 新的探索方向

以内存为代价的优化方案不具有扩展性。 如果需要将索引五分之一的数据都放在内存上,这需要非常大的开销。

应该探索其他的优化方案

5.1 探索1: 和向量相关的文件,是不是都需要预加载。做测试验证。

结论1走文件预加载,不做merge也可以生效。影响最大的是,预加载的时间长,体现在open索引的时候耗时就长。

结论2vec 文件占用空间最大,但是vec是必须加载的,否则无法提速,验证如下:

把上述5个索引,放在一个索引中,然后测试检索,耗时为73s。

注意本次未做merge,共373个segment。索引共有10个shard,如果做merge,应该是10个segment

5.1.1 其中 vem最小,先尝试只预加载这个文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem"]}}
}POST tilake_test_final/_open

37s 时间有减半。(注意这里,需要换一个向量,否则会走到缓存上)

避免随机性,又换一个向量。45s。

5.1.2 再加入vex文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem","vex"]}}
}POST tilake_test_final/_open

时间变短到19s

再测一组

5.1.3 加入vec文件

POST tilake_test_final/_closePUT /tilake_test_final/_settings
{"index": {"store": {"preload": ["vem","vex","vec"]}}
}
POST tilake_test_final/_open

查询验证,已经到了毫秒级,269毫秒。

再验证一组

这篇关于Elasticsearch向量检索(KNN)千万级耗时长问题分析与优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108950

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH