代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分

本文主要是介绍代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录训练营 Day38打卡 动态规划 part06

一、力扣322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。

所以本题并不强调集合是组合还是排列。

以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述
dp[amount]为最终结果。

代码实现

class Solution:def coinChange(self, coins: List[int], amount: int) -> int:# 创建一个长度为 amount + 1 的 dp 数组,初始值为正无穷大(表示当前金额不可达)dp = [float('inf')] * (amount + 1)# 初始化 dp[0] 为 0,因为凑出金额 0 需要 0 个硬币dp[0] = 0# 遍历每一种硬币面额for coin in coins:  # 遍历硬币,相当于遍历物品# 对于当前硬币面额 coin,遍历背包容量从 coin 到 amountfor i in range(coin, amount + 1):  # 遍历背包容量# 如果 dp[i - coin] 不是正无穷大,表示金额 (i - coin) 可达if dp[i - coin] != float('inf'):# 更新 dp[i],取使用当前硬币和不使用当前硬币两种情况中的最小值dp[i] = min(dp[i - coin] + 1, dp[i])# 检查 dp[amount] 是否仍为正无穷大# 如果是,则表示没有办法凑出总金额,返回 -1if dp[amount] == float('inf'):return -1# 否则,返回凑出总金额所需的最少硬币个数return dp[amount]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
示例
输入:n = 12
输出:3
解释:12 = 4 + 4 + 4

完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

dp[j]:和为j的完全平方数的最少数量为dp[j]

dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

已输入n为5例,dp状态图如下:
在这里插入图片描述
最后的dp[n]为最终结果。

class Solution:def numSquares(self, n: int) -> int:# 初始化 dp 数组,长度为 n + 1,初始值为正无穷大# dp[j] 表示和为 j 的完全平方数的最少数量dp = [float('inf')] * (n + 1)# dp[0] = 0,因为和为 0 需要 0 个完全平方数dp[0] = 0# 遍历所有可能的完全平方数for i in range(1, int(n ** 0.5) + 1):  # i 表示当前完全平方数的根,如 1, 2, 3, ..., sqrt(n)square = i * i  # 计算完全平方数# 遍历背包容量(即要凑的目标和)for j in range(square, n + 1):  # j 表示当前目标和,从 square 到 n# 更新 dp[j],选择使用当前完全平方数后的最小值dp[j] = min(dp[j - square] + 1, dp[j])# 返回和为 n 的完全平方数的最少数量return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

三、力扣139. 单词拆分

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。

单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。

拆分时可以重复使用字典中的单词,说明就是一个完全背包!

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。

“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

在这里插入图片描述
dp[s.size()]就是最终结果。

class Solution:def wordBreak(self, s: str, wordDict: List[str]) -> bool:# 将 wordDict 转换为一个集合,以便更快速地进行单词查找操作wordSet = set(wordDict)n = len(s)  # 获取字符串 s 的长度# 创建一个长度为 n + 1 的 dp 数组# dp[i] 表示字符串 s 的前 i 个字符是否可以被拆分成字典中的单词dp = [False] * (n + 1)# dp[0] 表示空字符串,空字符串被认为可以被拆分成字典中的单词dp[0] = True# 遍历字符串的每个位置 i(从 1 到 n),相当于动态规划中的“背包容量”for i in range(1, n + 1):# 对于每个位置 i,检查从 0 到 i 的所有前缀 s[0:j] 是否可以被拆分for j in range(i):# 如果 s 的前 j 个字符可以被拆分成单词(dp[j] 为 True)# 并且 s[j:i] 这一段字符串在 wordSet 中存在,则 dp[i] 也为 Trueif dp[j] and s[j:i] in wordSet:dp[i] = True  # 更新 dp[i] 为 True,表示 s[0:i] 可以被拆分成字典中的单词break  # 找到一个有效拆分后,停止当前循环,进入下一个 i# 最后返回 dp[n],即字符串 s 的前 n 个字符(即整个字符串)是否可以被拆分成字典中的单词return dp[n]

力扣题目链接
题目文章讲解
题目视频讲解

这篇关于代码随想录训练营 Day38打卡 动态规划 part06 322. 零钱兑换 279. 完全平方数 139. 单词拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106757

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,