蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码)

本文主要是介绍蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、蛇优化算法优化RBF神经网络的扩散速度原理介绍

RBF神经网络的扩散速度通常与它的径向基函数的宽度参数(σ)有关,这个参数控制了函数的径向作用范围。在高斯核函数中,当σ值较大时,函数的扩散速度较快,即它的影响范围更广,对输入数据的局部变化不太敏感;而σ值较小时,函数的扩散速度较慢,影响范围较小,对输入数据的局部变化更加敏感 。

RBF神经网络通过使用高斯函数作为隐含层激活函数,实现了从低维空间到高维空间的非线性映射。这种映射是非线性的,而网络输出对可调参数(权重)是线性的,因此可以通过线性方程组直接解出权重,从而加快学习速度并避免局部极小问题 。

在RBF网络中,每个隐含层节点的激活函数都以一个中心点为中心,当输入数据点接近这些中心点时,相应的激活值会更高,远离中心点时激活值则会下降。因此,RBF网络的扩散速度可以被视为其在特征空间中对输入变化的响应速度,这与基函数的宽度参数密切相关 。

蛇优化算法(Snake Optimization, SO)在解决全局优化问题时表现出了良好的性能,可以用于对RBF神经网络的扩散速度的寻优。

二、部分代码

以5个输入,2个输出的数据集为例,采用蛇优化算法优化RBF神经网络的扩散速度,实现多数入多输出数据的预测误差最小。可以自行更改数据集

close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = load('data.txt');
%%  划分训练集和测试集
temp = randperm(1000);%打乱数据集序号
Train=800;%训练数据
D=5;%数据集的变量个数
P_train = res(temp(1: Train), 1 : D)';
T_train = res(temp(1: Train), D+1:end)';
M = size(P_train, 2);P_test = res(temp(Train+1: end), 1 : D)';
T_test = res(temp(Train+1: end),D+1:end)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 优化算法求解RBF神经网络的最优扩散速度
pop = 20;       %种群数量
Max_iter = 30;  %最大迭代次数
lb = 0.00001;     %下边界
ub = 1;         %上边界
dim = 1;        %维度
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test);
[ Best_score, Best_P,curve] = SO(pop, Max_iter, lb, ub, dim, fobj);

三、部分结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对于第一个输出:
训练集数据的R2为:1
测试集数据的R2为:0.99877
训练集数据的MAE为:4.5318e-13
测试集数据的MAE为:2.414
训练集数据的MBE为:1.9725e-13
测试集数据的MBE为:0.092719
在这里插入图片描述
在这里插入图片描述
对于第二个输出:
训练集数据的R2为:1
测试集数据的R2为:0.99754
训练集数据的MAE为:2.4591e-14
测试集数据的MAE为:0.2266
训练集数据的MBE为:-9.3681e-15
测试集数据的MBE为:-0.0011076

四、完整MATLAB代码

下方名片

这篇关于蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094991

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很