蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码)

本文主要是介绍蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、蛇优化算法优化RBF神经网络的扩散速度原理介绍

RBF神经网络的扩散速度通常与它的径向基函数的宽度参数(σ)有关,这个参数控制了函数的径向作用范围。在高斯核函数中,当σ值较大时,函数的扩散速度较快,即它的影响范围更广,对输入数据的局部变化不太敏感;而σ值较小时,函数的扩散速度较慢,影响范围较小,对输入数据的局部变化更加敏感 。

RBF神经网络通过使用高斯函数作为隐含层激活函数,实现了从低维空间到高维空间的非线性映射。这种映射是非线性的,而网络输出对可调参数(权重)是线性的,因此可以通过线性方程组直接解出权重,从而加快学习速度并避免局部极小问题 。

在RBF网络中,每个隐含层节点的激活函数都以一个中心点为中心,当输入数据点接近这些中心点时,相应的激活值会更高,远离中心点时激活值则会下降。因此,RBF网络的扩散速度可以被视为其在特征空间中对输入变化的响应速度,这与基函数的宽度参数密切相关 。

蛇优化算法(Snake Optimization, SO)在解决全局优化问题时表现出了良好的性能,可以用于对RBF神经网络的扩散速度的寻优。

二、部分代码

以5个输入,2个输出的数据集为例,采用蛇优化算法优化RBF神经网络的扩散速度,实现多数入多输出数据的预测误差最小。可以自行更改数据集

close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = load('data.txt');
%%  划分训练集和测试集
temp = randperm(1000);%打乱数据集序号
Train=800;%训练数据
D=5;%数据集的变量个数
P_train = res(temp(1: Train), 1 : D)';
T_train = res(temp(1: Train), D+1:end)';
M = size(P_train, 2);P_test = res(temp(Train+1: end), 1 : D)';
T_test = res(temp(Train+1: end),D+1:end)';
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 优化算法求解RBF神经网络的最优扩散速度
pop = 20;       %种群数量
Max_iter = 30;  %最大迭代次数
lb = 0.00001;     %下边界
ub = 1;         %上边界
dim = 1;        %维度
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test);
[ Best_score, Best_P,curve] = SO(pop, Max_iter, lb, ub, dim, fobj);

三、部分结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
对于第一个输出:
训练集数据的R2为:1
测试集数据的R2为:0.99877
训练集数据的MAE为:4.5318e-13
测试集数据的MAE为:2.414
训练集数据的MBE为:1.9725e-13
测试集数据的MBE为:0.092719
在这里插入图片描述
在这里插入图片描述
对于第二个输出:
训练集数据的R2为:1
测试集数据的R2为:0.99754
训练集数据的MAE为:2.4591e-14
测试集数据的MAE为:0.2266
训练集数据的MBE为:-9.3681e-15
测试集数据的MBE为:-0.0011076

四、完整MATLAB代码

下方名片

这篇关于蛇优化算法(Snake Optimization, SO)优化RBF神经网络的扩散速度实现多数入多输出数据预测,可以更改数据集(MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094991

相关文章

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa