▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 model-based】

本文主要是介绍▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 model-based】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍

  • 1、视频 + 学堂在线 习题
  • 2、过 电子书 补充 【下载: 本章 PDF 电子书 GitHub】 [又看了一遍视频。原来第一次跳过了好多内容。。。]
  • 3、总体 MOOC 过一遍 习题

学堂在线 课程页面链接
中国大学MOOC 课程页面链接
B 站 视频链接

PPT和书籍下载网址: 【GitHub 链接】


在这里插入图片描述

总述:

开始介绍第一个可以找到最优策略的算法。 ——> 动态规划算法

介绍 3 种 迭代算法:
1、值迭代算法: 上一章讨论的求解 Bellman 最优方程的压缩映射定理 所提出的算法。
2、策略迭代算法
3、截断策略迭代算法: 值迭代 和 策略迭代 算法是该算法的极端情况。

动态规划 算法,需要系统模型。
本章介绍的策略迭代算法 扩展得到 第 5 章介绍的蒙特卡洛算法。
——————————————
model-based 算法

值迭代 上一章 的延伸
策略迭代 下一章 蒙特卡洛学习的基础

在这里插入图片描述

值迭代 和 策略迭代 是 截断策略迭代 的两个极端情况

4.1 值迭代

贝尔曼最优公式 的 矩阵向量形式:

v = f ( v ) = max ⁡ π ( r π + γ P π v ) \bm v=f(\bm v) =\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}) v=f(v)=πmax(rπ+γPπv)

求解方法: 上一章 的 压缩映射定理 建议的迭代算法 【值迭代】

v k + 1 = f ( v k ) = max ⁡ π ( r π + γ P π v k ) , k = 1 , 2 , 3... {\bm v}_{k+1} = f({\bm v}_k)=\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k), ~~~k=1, 2, 3... vk+1=f(vk)=πmax(rπ+γPπvk),   k=1,2,3...

其中 v 0 {\bm v}_0 v0 可为任意值。

两步:
1、策略 更新 (policy update)

  • v k {\bm v}_k vk 给定, 求解 π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v k ) \pi_{k+1} = \arg \max\limits_{\pi}({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k) πk+1=argπmax(rπ+γPπvk)

2、值 更新 (value update)

  • 上一步得到的策略 π k + 1 \pi_{k+1} πk+1, 更新 v k + 1 = r π k + 1 + γ P π k + 1 v k {\bm v}_{k +1}={\bm r}_{\pi_{k+1}}+\gamma {\bm P}_{\pi_{k+1}}{\bm v}_k vk+1=rπk+1+γPπk+1vk

在这里插入图片描述

v k v_k vk 是否是一个状态值?
答案是否定的。虽然 v k v_k vk 最终收敛于最优状态值,但不能保证满足任何策略的 Bellman方程。例如,它一般不满足 v k = r π k + γ P π k v k v_k=r_{\pi_k}+\gamma P_{\pi_k}v_k vk=rπk+γPπkvk v k = r π k + 1 + γ P π k + 1 v k v_k=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_k vk=rπk+1+γPπk+1vk。它只是算法生成的一个中间值。另外,由于 v k v_k vk 不是状态值,所以 q k q_k qk 不是动作值。

编程实现 需要知道 更具体的形式 elementwise form
更新策略 更具体的形式为:
π k + 1 ( s ) = arg ⁡ max ⁡ π ∑ a π ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) ⏟ q k ( s , a ) , s ∈ S \pi_{k+1}(s) = \arg \max\limits_{\pi}\sum_a\pi(a|s)\underbrace{\Big(\sum_rp(r|s, a)r+\gamma \sum_{s^{\prime}}p(s^{\prime}|s, a)v_k(s^{\prime})\Big)}_{q_k(s, a)},s \in S πk+1(s)=argπmaxaπ(as)qk(s,a) (rp(rs,a)r+γsp(ss,a)vk(s)),sS

根据上一章的分析,上述优化问题的最优策略解为:
π k + 1 ( a ∣ s ) = { 1 a = a k ∗ ( s ) 0 a ≠ a k ∗ ( s ) \pi_{k+1}(a|s)=\begin{cases}1\quad a=a_k^*(s) \\ 0\quad a\neq a_k^*(s) \end{cases} πk+1(as)={1a=ak(s)0a=ak(s)
其中 a k ∗ ( s ) = arg ⁡ max ⁡ a q k ( a , s ) a_k^*(s)=\arg\max\limits_aq_k(a, s) ak(s)=argamaxqk(a,s)

  • 如果 a k ∗ ( s ) = arg ⁡ max ⁡ a q k ( a , s ) a_k^*(s)=\arg\max\limits_aq_k(a, s) ak(s)=argamaxqk(a,s) 有多个解,我们可以选择任意一个解而不影响算法的收敛性。 只是若是没选中最优策略该选的动作,需要多迭代几次后才能获得最终的最优策略

贪心策略 π k + 1 \pi_{k+1} πk+1:贪心地选择 q k ( a , s ) q_k(a, s) qk(a,s) 最大的 action ~~~     确定的策略
————————————
更新值 更具体的形式为:
v k + 1 ( s ) = ∑ a π k + 1 ( a ∣ s ) ( ∑ r p ( r ∣ s , a ) r + γ ∑ s ′ p ( s ′ ∣ s , a ) v k ( s ′ ) ) ⏟ q k ( s , a ) , s ∈ S = max ⁡ a q k ( a , s ) \begin{align*}v_{k +1}(s)&=\sum_a\pi_{k+1}(a|s)\underbrace{\Big(\sum_rp(r|s, a)r+\gamma \sum_{s^{\prime}}p(s^{\prime}|s, a)v_k(s^{\prime})\Big)}_{q_k(s, a)},s \in S\\ &=\max_aq_k(a, s)\end{align*} vk+1(s)=aπk+1(as)qk(s,a) (rp(rs,a)r+γsp(ss,a)vk(s)),sS=amaxqk(a,s)

迭代流程

v k ( s ) → q k ( s , a ) → v_k(s)\to q_k(s, a)\to vk(s)qk(s,a) 贪心策略 π k + 1 ( a ∣ s ) → ~\pi_{k+1}(a|s)\to  πk+1(as) 新的值 v k + 1 = max ⁡ a q k ( s , a ) ~v_{k+1}=\max\limits_{a}q_k(s, a)  vk+1=amaxqk(s,a)

伪代码: 值迭代算法
目标: 搜索 求解 贝尔曼最优公式的 最优状态值 和 最优策略。

在这里插入图片描述

遍历 每个状态 中的 每个动作, 计算 q k q_k qk

  • 策略 更新: 选择 q k q_k qk 最大的 action
  • 值 更新: 将 v k + 1 ( s ) v_{k+1}(s) vk+1(s) 更新为 计算得到的最大 q k q_k qk

4.1.2 例子

在这里插入图片描述

对 每个状态 的 每个动作 ,初始化 q q q 值表

在这里插入图片描述

在这里插入图片描述
按照这里
策略更新 是将 每个状态 的 q q q 值最大的动作 的选取概率 π ( a ∣ s ) \pi(a|s) π(as) 置为 1。 ~~~    等效于 让策略在这一步 做这个 q q q 值最大的动作
值更新 是将 每个状态 的 值更新为 相应状态的最大 q q q 值。

v 0 v_0 v0 可以任意选取,这里选择为 0。 不同的初值选取对迭代过程影响多大?如何根据具体情况选取合适的初值?
——> 比较直觉的是若是初始值选得离最优状态值较远, 需要的迭代次数会多些。

对于 状态 s 1 s_1 s1,动作 a 3 a_3 a3 a 5 a_5 a5 对应的 q q q 都是最大的, 这里直接选了 a 5 a_5 a5, 有没有可能在这里选 a 3 a_3 a3 得到的才是最优策略呢?
——> 确实有可能, 所以要多次迭代,收敛后迭代结束获得的就是 最优策略。

在这里插入图片描述

第一次 迭代, s1 没有达到 最优。

在这里插入图片描述

在这里插入图片描述

这里 迭代两次 就获得了 最优策略。

其它 更复杂情况 的迭代停止条件为:

在这里插入图片描述

迭代停止 则认为 获得了 最优策略。

4.2 策略迭代

主要内容: 是什么?——> 性质 ——> 如何 编程实现

任意给定的初始策略 π 0 \pi_0 π0

两步:
1、策略 评估 (policy evaluation, PE)

  • 计算 π k \pi_k πk 的状态值: v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k}~~~~~~~ vπk=rπk+γPπkvπk       求解 贝尔曼方程

策略评估做的事:通过计算相应的 状态值 来评估给定策略。

2、策略 优化 (policy improvement,PI)

  • π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

迭代流程

π 0 → P E v π 0 → P I π 1 → P E v π 1 → P I π 2 → P E v π 2 → P I . . . \pi_0\xrightarrow{PE}v_{\pi_0}\xrightarrow{PI}\pi_1\xrightarrow{PE}v_{\pi_1}\xrightarrow{PI}\pi_2\xrightarrow{PE}v_{\pi_2}\xrightarrow{PI}... π0PE vπ0PI π1PE vπ1PI π2PE vπ2PI ...

PE: 策略 评估
PI:策略 优化

现在处理以下几个问题:

Q1:在策略评估步骤中,如何通过求解 Bellman 方程得到状态值?
Q2:在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk?
Q3:为什么这样的迭代算法最终可以达到最优策略?
Q4:这个策略迭代算法和之前的值迭代算法是什么关系?

Q1:在策略评估步骤中,如何通过求解 Bellman 方程得到状态值?

如何 获取 v π k v_{\pi_k} vπk

已知: v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k} vπk=rπk+γPπkvπk

方法一: 矩阵求逆

v π k = ( I − γ P π k ) − 1 r π k {\bm v}_{\pi_k}=({\bm I}-\gamma {\bm P}_{\pi_k})^{-1}{\bm r}_{\pi_k} vπk=(IγPπk)1rπk

方法二: 迭代 ✔

v π k ( j + 1 ) = r π k + γ P π k v π k ( j ) , j = 0 , 1 , 2 , . . . {\bm v}_{\pi_k}^{(j+1)}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k}^{(j)}, ~~~j=0,1,2,... vπk(j+1)=rπk+γPπkvπk(j),   j=0,1,2,...

策略迭代 是在策略评估步骤中嵌入另一个迭代算法的迭代算法!

Q2:在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk?

在这里插入图片描述

  • 证明 1: 在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk? ~~    P73-

Q3:为什么策略迭代算法最终可以找到最优策略?

由于每次迭代都会改进策略, 即

v π 0 ≤ v π 1 ≤ v π 2 ≤ ⋯ ≤ v π k ≤ ⋯ ≤ v ∗ \bm v_{\pi_0}\leq\bm v_{\pi_1}\leq\bm v_{\pi_2}\leq\cdots\leq\bm v_{\pi_k}\leq\cdots\leq\bm v^* vπ0vπ1vπ2vπkv

v π k \bm v_{\pi_k} vπk 不断减小并最终收敛。仍需证明 将收敛到 v ∗ \bm v^* v

在这里插入图片描述

定理 4.1 (策略迭代的收敛性)。策略迭代算法生成的状态值序列 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 收敛到最优状态值 v ∗ v^* v。因此,策略序列 { π k } k = 0 ∞ \{\pi_k\}_{k=0}^\infty {πk}k=0 收敛到最优策略。

  • 证明 2: 证明策略迭代会收敛到 最优策略 P75

证明的思路是证明 策略迭代算法 比 值迭代算法 收敛得更快。

如果 策略迭代 和 值迭代 从相同的初始猜测开始,由于 策略迭代 算法的收敛性,策略迭代 将比 值迭代 收敛得更快

Q4:这个策略迭代算法和之前的值迭代算法是什么关系?

值迭代 和 策略迭代 是 截断策略迭代 的两个极端, 后续将进一步说明。

——————————————————
如何 实现 策略迭代算法?

在这里插入图片描述
在这里插入图片描述

策略迭代 算法:
目标: 搜索 最优状态值 和 最优策略

在这里插入图片描述

策略迭代算法 生成的中间值是是 状态值。 因为这些值是当前策略的 Bellman 方程的解。

4.2.3 例子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一个 示例 P79
发现一个有趣的现象:接近目标的状态 的策略 先变好, 远离目标的状态的策略会后变好。

在某一个状态, 选择 greedy action 时, 严重依赖于 其它状态的策略。
若其它状态的策略是不好的, 此时虽然选一个 动作值 ( q q q) 最大的 动作, 可能意义不大;
如果 其它状态 有能够到达目标区域 的策略, 选择变到那个状态,也能到达目标区域, 得到正的 reward。

当某个状态周围 没有状态 能够到达 目标区域 的时候, 这个状态无法到达目标区域。
当周围有状态能够到达目标区域策略时, 新的策略也能到达目标区域。

1、观察策略是如何演变的,一个有趣的模式是靠近目标区域的状态比远离目标区域的状态更早找到最优策略。只有较近的状态能先找到到达目标的轨迹,较远的状态才能找到经过较近状态到达目标的轨迹
2、状态值的空间分布呈现出一种有趣的模式:靠近目标的状态具有更大的状态值。这种模式的原因是,一个 agent 从更远的状态出发,必须走很多步才能获得正的奖励。这样的奖励将严重打折扣,因此相对较小。

4.3 截断策略迭代

值迭代 算法和 策略迭代 算法是截断策略迭代算法的两种特殊情况。

策略迭代:初始策略 为 π 0 \pi_0~~ π0   【任意猜测的】

  • 策略评估 (PE): v π k = r π k + γ P π k v π k {\bm v}_{\pi_k}={\bm r}_{\pi_k}+\gamma {\bm P}_{\pi_k}{\bm v}_{\pi_k} vπk=rπk+γPπkvπk
  • 策略优化 (PI): π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

值迭代:初始值 为 v 0 {\bm v}_0 v0

  • 策略更新 (PU): π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v k ) \pi_{k+1}=\arg\max\limits_\pi({\bm r}_\pi+\gamma {\bm P}_\pi {\bm v}_k) πk+1=argπmax(rπ+γPπvk)
  • 值更新 (VU): v k + 1 = r π k + 1 + γ P π k + 1 v k {\bm v}_{k+1}={\bm r}_{\pi_{k+1}}+\gamma {\bm P}_{\pi_{k+1}}{\bm v}_k vk+1=rπk+1+γPπk+1vk

!!每一步的等号右侧 都有的: r + γ P v {\bm r} +\gamma {\bm P} {\bm v} r+γPv

在这里插入图片描述

在这里插入图片描述

从相同的初始条件开始。
前三个步骤是相同的。
第四步就不一样了:

  • 策略迭代,求解 v π 1 = r π 1 + γ P π 1 v π 1 v_{π_1} = r_{π_1} + γP_{\pi_1}v_{\pi_1} vπ1=rπ1+γPπ1vπ1 需要一个迭代算法 ( 迭代无数次 )
  • 值迭代, v 1 = r π 1 + γ P π 1 v 0 v_1 = r_{π_1} + \gamma P_{π_1}v_0 v1=rπ1+γPπ1v0一步迭代

在这里插入图片描述

每步求解 v \bm v v 值时, 值迭代 需要一步, 策略迭代需要无穷步,迭代次数取中间值如何呢?

值迭代算法:计算一次。
策略迭代算法:计算无限次迭代。
截断策略迭代算法:计算一个有限次迭代(例如 j j j )。从 j j j ∞ \infty 的其余迭代被截断。

在这里插入图片描述

算法中的 v k v_k vk v k ( j ) v_k^{(j)} vk(j) 不是状态值,是真实状态值的近似值,因为在策略评估步骤中只执行有限次迭代。

只有当我们在 策略评估 步骤中运行无限次迭代时,才能获得真实的状态值。

截断策略迭代 会不会 结束迭代时是一个 发散的结果?

在这里插入图片描述

  • 证明。参考 电子书 PDF P83

——————————————

证明: 截断策略迭代算法 的收敛性。

因为

v π k ( j ) = r π k + γ P π k v π k ( j − 1 ) v_{\pi_k}^{(j)}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(j-1)} vπk(j)=rπk+γPπkvπk(j1)

v π k ( j + 1 ) = r π k + γ P π k v π k ( j ) v_{\pi_k}^{(j+1)}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(j)} vπk(j+1)=rπk+γPπkvπk(j)

v π k ( j + 1 ) − v π k ( j ) = γ P π k ( v π k ( j ) − v π k ( j − 1 ) ) = ⋯ = γ j P π k j ( v π k ( 1 ) − v π k ( 0 ) ) v_{\pi_k}^{(j+1)}-v_{\pi_k}^{(j)}=\gamma P_{\pi_k}(v_{\pi_k}^{(j)}-v_{\pi_k}^{(j-1)})=\cdots=\gamma^j P^j_{\pi_k}(v_{\pi_k}^{(1)}-v_{\pi_k}^{(0)}) vπk(j+1)vπk(j)=γPπk(vπk(j)vπk(j1))==γjPπkj(vπk(1)vπk(0))

v π k ( 0 ) = v π k − 1 v_{\pi_k}^{(0)}=v_{\pi_{k-1}}~~~~ vπk(0)=vπk1     上一轮迭代的结果

v π k ( 1 ) = r π k + γ P π k v π k ( 0 ) = r π k + γ P π k v π k − 1 ≥ r π k − 1 + γ P π k − 1 v π k − 1 ① = v π k − 1 = v π k ( 0 ) \begin{aligned}v_{\pi_k}^{(1)}&=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}^{(0)}\\ &=r_{\pi_k}+\gamma P_{\pi_k}\textcolor{blue}{v_{\pi_{k-1}}}\\ &\geq r_{\pi_{\textcolor{blue}{{k-1}}}}+\gamma P_{\pi_{\textcolor{blue}{{k-1}}}}\textcolor{blue}{v_{\pi_{k-1}}}~~~~~~~~\textcolor{blue}{①}\\ &=v_{\pi_{k-1}}\\ &=v_{\pi_k}^{(0)}\end{aligned} vπk(1)=rπk+γPπkvπk(0)=rπk+γPπkvπk1rπk1+γPπk1vπk1        =vπk1=vπk(0)

v π k ( j + 1 ) ≥ v π k ( j ) v_{\pi_k}^{(j+1)}\geq v_{\pi_k}^{(j)} vπk(j+1)vπk(j)

π k = arg ⁡ max ⁡ π ( r π + γ P π v π k − 1 ) \pi_k=\arg\max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_{k-1}}) πk=argπmax(rπ+γPπvπk1)

——————————————
在这里插入图片描述
相比于策略迭代算法,截断的策略迭代算法在策略评估步骤中只需要有限次数的迭代,因此计算效率更高。与值迭代相比,截断策略迭代算法可以在策略评估步骤中多运行几次迭代,从而加快收敛速度

Pl 【策略迭代】 的收敛性证明是基于 VI 【值迭代】 的收敛性证明。由于 VI 收敛,得到 PI 收敛。

小结:

在这里插入图片描述
4.5
Q:值迭代算法一定能找到最优策略吗?
是的。值迭代正是上一章求解 Bellman 最优性方程的 压缩映射定理 所提出的算法。利用 压缩映射定理 保证了算法的收敛性。

model-based VS model-free
虽然本章介绍的算法可以找到最优策略,但由于它们需要系统模型,通常被称为动态规划算法而不是强化学习算法。
强化学习算法可以分为两类:基于模型的和免模型的。
这里,“基于模型的”并不是指系统模型的需求。相反,基于模型的强化学习使用数据来估计系统模型,并在学习过程中使用该模型。相比之下,免模型强化学习在学习过程中不涉及模型估计

——————
习题

值迭代、策略迭代、截断策略迭代

值迭代算法中间产生的值不一定对应某些策略的状态值,这些只是产生的一些中间过程的数值,没有特别的含义。

压缩映射定理给出的算法 实际是 值迭代算法。

策略迭代算法 同时获得 最优状态值 和 最优策略。 【策略评估 需要计算状态值】

补充

证明 1: 在策略优化步骤中,为什么新策略 π k + 1 \pi_{k+1} πk+1 优于 π k π_k πk? ~~    P73-

证明:
状态值 v π k + 1 v_{\pi_{k+1}} vπk+1 v π k v_{\pi_k} vπk 满足贝尔曼公式:
v π k + 1 = r π k + 1 + γ P π k + 1 v π k + 1 v_{\pi_{k+1}}=r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}} vπk+1=rπk+1+γPπk+1vπk+1
v π k = r π k + γ P π k v π k v_{\pi_k}=r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k} vπk=rπk+γPπkvπk
由于 π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1} = \arg\max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)
r π k + 1 + γ P π k + 1 v π k + 1 ≥ r π k + γ P π k v π k r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}}\geq r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k} rπk+1+γPπk+1vπk+1rπk+γPπkvπk
v π k − v π k + 1 = ( r π k + γ P π k v π k ) − ( r π k + 1 + γ P π k + 1 v π k + 1 ) ≤ ( r π k + 1 + γ P π k + 1 v π k ) − ( r π k + 1 + γ P π k + 1 v π k + 1 ) ≤ γ P π k + 1 ( v π k − v π k + 1 ) ≤ γ 2 P π k + 1 2 ( v π k − v π k + 1 ) ≤ . . . ≤ γ n P π k + 1 n ( v π k − v π k + 1 ) ≤ lim ⁡ n → ∞ γ n P π k + 1 n ( v π k − v π k + 1 ) = 0 \begin{align*}v_{\pi_k}-v_{\pi_{k+1}}&= (r_{\pi_k}+\gamma P_{\pi_k}v_{\pi_k}) - (r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})\\ &\leq(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_k}) - (r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})\\ &\leq \gamma P_{\pi_{k+1}}(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq \gamma^2 P_{\pi_{k+1}}^2(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq ...\\ &\leq \gamma^n P_{\pi_{k+1}}^n(v_{\pi_k} -v_{\pi_{k+1}})\\ &\leq \lim\limits_{n\to\infty}\gamma^n P_{\pi_{k+1}}^n(v_{\pi_k} -v_{\pi_{k+1}})\\ &=0\end{align*} vπkvπk+1=(rπk+γPπkvπk)(rπk+1+γPπk+1vπk+1)(rπk+1+γPπk+1vπk)(rπk+1+γPπk+1vπk+1)γPπk+1(vπkvπk+1)γ2Pπk+12(vπkvπk+1)...γnPπk+1n(vπkvπk+1)nlimγnPπk+1n(vπkvπk+1)=0
在这里插入图片描述

证明 2: 证明策略迭代会收敛到 最优策略 P75

在这里插入图片描述

定理 4.1 (策略迭代的收敛性)。策略迭代算法生成的状态值序列 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 收敛到最优状态值 v ∗ v^* v。因此,策略序列 { π k } k = 0 ∞ \{\pi_k\}_{k=0}^\infty {πk}k=0 收敛到最优策略。

证明的思路是证明 策略迭代算法 比 值迭代算法 收敛得更快。

——————————
证明:
为了 证明 { v π k } k = 0 ∞ \{v_{\pi_k}\}_{k=0}^\infty {vπk}k=0 的收敛性, 引入由以下式子生成的 另一个序列 { v k } k = 0 ∞ \{v_k\}_{k=0}^\infty {vk}k=0

v k + 1 = f ( v k ) = max ⁡ π ( r π + γ P π v k ) v_{k+1}=f(v_k)=\max\limits_\pi(r_\pi+\gamma P_\pi v_k) vk+1=f(vk)=πmax(rπ+γPπvk)

这个迭代算法 正是 值迭代算法,则给定任意初始值 v 0 v_0 v0, v k v_k vk 收敛到 v ∗ v^* v

k = 1 k=1 k=1, 对任意 π 0 \pi_0 π0, 有 v π 0 ≥ v 0 v_{\pi_0}\geq v_0 vπ0v0

通过 归纳法 证明 对任意 k k k, 有 v k ≤ v π k ≤ v ∗ v_k\leq v_{\pi_k}\leq v^* vkvπkv

k ≥ 0 k\geq0 k0, 假设 v π k ≥ v k v_{\pi_k}\geq v_k vπkvk

用到的一些中间式:

在这里插入图片描述
v π k + 1 ≥ v π k v_{\pi_{k+1}}\geq v_{\pi_k}~~ vπk+1vπk   【上面的 证明 1 已证。即 策略优化后的策略的状态值 比之前的大】 , P π k + 1 ≥ 0 P_{\pi_{k+1}}\geq0 Pπk+10
② 令 π k ′ = arg ⁡ max ⁡ π ( r π + γ P π v k ) {\textcolor{blue}{{\pi_k^\prime}}}=\arg \max\limits_\pi(r_\pi+\gamma P_\pi v_k) πk=argπmax(rπ+γPπvk)
π k + 1 = arg ⁡ max ⁡ π ( r π + γ P π v π k ) \pi_{k+1}=\arg \max\limits_\pi(r_\pi+\gamma P_\pi v_{\pi_k}) πk+1=argπmax(rπ+γPπvπk)

对于 k + 1 k + 1 k+1 有:

v π k + 1 − v k + 1 = ( r π k + 1 + γ P π k + 1 v π k + 1 ) − max ⁡ π ( r π + γ P π v k ) ≥ ( r π k + 1 + γ P π k + 1 v π k ) − max ⁡ π ( r π + γ P π v k ) ① = ( r π k + 1 + γ P π k + 1 v π k ) − ( r π k ′ + γ P π k ′ v k ) ② ≥ ( r π k ′ + γ P π k ′ v π k ) − ( r π k ′ + γ P π k ′ v k ) ③ = γ P π k ′ ( v π k − v k ) \begin{aligned}v_{\pi_{k+1}}-v_{k+1}&=(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{k+1}})-\max\limits_\pi(r_\pi+\gamma P_\pi v_k)\\ &\geq(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_{\textcolor{blue}{k}} })-\max\limits_\pi(r_\pi+\gamma P_\pi v_k)~~~~~~~~~~\textcolor{blue}{①}\\ &=(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}}v_{\pi_k })-(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_k)~~~~~~~~~~\textcolor{blue}{②}\\ &\geq(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_{\pi_k })-(r_{\textcolor{blue}{{\pi_k^\prime}}}+\gamma P_{\textcolor{blue}{{\pi_k^\prime}}}v_k)~~~~~~~~~~\textcolor{blue}{③}\\ &=\gamma P_{\pi_k^\prime}(v_{\pi_k}-v_k)\end{aligned} vπk+1vk+1=(rπk+1+γPπk+1vπk+1)πmax(rπ+γPπvk)(rπk+1+γPπk+1vπk)πmax(rπ+γPπvk)          =(rπk+1+γPπk+1vπk)(rπk+γPπkvk)          (rπk+γPπkvπk)(rπk+γPπkvk)          =γPπk(vπkvk)

因为 v π k − v k ≥ 0 v_{\pi_k}-v_k\geq0 vπkvk0 P π k ′ P_{\pi_k^\prime} Pπk 非负。

γ P π k ′ ( v π k − v k ) ≥ 0 \gamma P_{\pi_k^\prime}(v_{\pi_k}-v_k)\geq0 γPπk(vπkvk)0

v π k + 1 − v k + 1 ≥ 0 v_{\pi_{k+1}}-v_{k+1}\geq0 vπk+1vk+10

归纳得到, 对任意 k > 0 k > 0 k>0 v k ≤ v π k ≤ v ∗ v_k\leq v_{\pi_k}\leq v^* vkvπkv
v k v_k vk 收敛到 v ∗ v^* v, 由夹逼准则可得, v π k v_{\pi_k} vπk 也收敛到 v ∗ v^* v

这篇关于▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch4 值迭代 与 策略迭代 【动态规划 model-based】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086296

相关文章

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用