本文主要是介绍算法训练 | 动态规划Part7 | 198.打家劫舍、213.打家劫舍II、337.打家劫舍III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
198.打家劫舍(线性)
动态规划法
213.打家劫舍II(环形)
动态规划法
337.打家劫舍III(二叉树)
动态规划法
198.打家劫舍(线性)
-
题目链接:198. 打家劫舍 - 力扣(LeetCode)
-
文章讲解:代码随想录
动态规划法
-
解题思路
-
当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动态规划的递推公式。
-
-
解题步骤
-
确定dp数组(dp table)以及下标的含义:dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
-
确定递推公式:决定dp[i]的因素就是第i房间偷还是不偷。
-
如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。
-
如果不偷第i房间,那么dp[i] = dp[i - 1],即考虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点)
-
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
-
-
dp数组如何初始化:从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1],从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
-
确定遍历顺序:dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历。
-
举例推导dp数组:
-
-
代码注意
-
初值设置
-
-
代码一:动态规划
// 时间复杂度: O(n)
// 空间复杂度: O(n)
class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];vector<int> dp(nums.size());dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
};
213.打家劫舍II(环形)
-
题目链接:213. 打家劫舍 II - 力扣(LeetCode)
-
文章讲解:代码随想录
动态规划法
-
解题思路
对于一个数组,成环的话主要有如下三种情况:注意这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。而情况二和情况三都包含了情况一了,所以只考虑情况二和情况三就可以了。
-
情况一:考虑不包含首尾元素
-
情况二:考虑包含首元素,不包含尾元素
-
情况三:考虑包含尾元素,不包含首元素
-
-
解题步骤
-
同打家劫舍1,只是抽离分情况
-
-
代码一:动态规划
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];int result1 = robRange(nums, 0, nums.size() - 2); // 情况二int result2 = robRange(nums, 1, nums.size() - 1); // 情况三return max(result1, result2);}// 198.打家劫舍的逻辑int robRange(vector<int>& nums, int start, int end) {if (end == start) return nums[start];vector<int> dp(nums.size());dp[start] = nums[start];dp[start + 1] = max(nums[start], nums[start + 1]);for (int i = start + 2; i <= end; i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[end];}
};
337.打家劫舍III(二叉树)
-
题目链接:337. 打家劫舍 III - 力扣(LeetCode)
-
文章讲解:代码随想录
动态规划法
-
解题思路
-
对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算。与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”)
-
动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。以二叉树递归三部曲为框架,其中融合动规五部曲。
-
-
解题步骤
-
确定递归函数的参数和返回值:要求一个节点偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。所以本题dp数组就是一个长度为2的数组!
-
确定终止条件:在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回。这也相当于dp数组的初始化。
-
确定遍历顺序:首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。通过递归左节点,得到左节点偷与不偷的金钱。通过递归右节点,得到右节点偷与不偷的金钱。
-
确定单层递归的逻辑:如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义)如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
-
例推导dp数组:以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导)
-
-
代码一:x动态规划
// 时间复杂度:O(n),每个节点只遍历了一次
// 空间复杂度:O(log n),算上递推系统栈的空间
class Solution {
public:int rob(TreeNode* root) {vector<int> result = robTree(root);return max(result[0], result[1]);}// 长度为2的数组,0:不偷,1:偷vector<int> robTree(TreeNode* cur) {if (cur == NULL) return vector<int>{0, 0};vector<int> left = robTree(cur->left);vector<int> right = robTree(cur->right);// 偷cur,那么就不能偷左右节点。int val1 = cur->val + left[0] + right[0];// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况int val2 = max(left[0], left[1]) + max(right[0], right[1]);return {val2, val1};}
};
这篇关于算法训练 | 动态规划Part7 | 198.打家劫舍、213.打家劫舍II、337.打家劫舍III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!