本文主要是介绍算法训练 | 动态规划Part4 | 3. 416.分割等和子集、1049.最后一块石头的重量 II、494.目标和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
416.分割等和子集
动态规划法
1049.最后一块石头的重量 II
动态规划法
494.目标和
XXX法
416.分割等和子集
-
题目链接:416. 分割等和子集 - 力扣(LeetCode)
-
文章讲解:代码随想录
动态规划法
-
解题思路
-
背包的体积为sum / 2
-
背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
-
背包如果正好装满,说明找到了总和为 sum / 2 的子集。
-
背包中每一个元素是不可重复放入。
-
-
解题步骤
-
确定dp数组以及下标的含义:01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。本题中每一个元素的数值既是重量,也是价值。套到本题,dp[j]表示背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
-
确定递推公式:01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
-
dp数组如何初始化:首先dp[0]一定是0。如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
-
确定遍历顺序:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历
-
举例推导dp数组:dp[j]的数值一定是小于等于j的。如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j
-
-
代码一:动态规划
// 时间复杂度:O(n^2)
// 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数
class Solution {
public:bool canPartition(vector<int>& nums) {int sum = 0;// dp[i]中的i表示背包内总和// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了vector<int> dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}// 也可以使用库函数一步求和// int sum = accumulate(nums.begin(), nums.end(), 0);if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};
1049.最后一块石头的重量 II
-
题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode)
-
文章讲解:代码随想录
动态规划法
-
解题思路
-
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。
-
本题物品的重量为stones[i],物品的价值也为stones[i]。对应着01背包里的物品重量weight[i]和 物品价值value[i]
-
-
-
确定dp数组以及下标的含义:dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”
-
确定递推公式:01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
-
dp数组如何初始化:既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。这里就直接用15000了。因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。
-
确定遍历顺序:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
-
举例推导dp数组:dp[target]里是容量为target的背包所能背的最大重量。分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]
-
-
代码一:动态规划
// 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
// 空间复杂度:O(m)
class Solution {
public:int lastStoneWeightII(vector<int>& stones) {vector<int> dp(15001, 0);int sum = 0;for (int i = 0; i < stones.size(); i++) sum += stones[i];int target = sum / 2;for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - dp[target] - dp[target];}
};
494.目标和
-
题目链接:494. 目标和 - 力扣(LeetCode)
-
文章讲解:代码随想录
XXX法
-
解题思路
-
本题要如何使表达式结果为target,既然为target,那么就一定有 left组合 - right组合 = target。left + right = sum,而sum是固定的。right = sum - left公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。target是固定的,sum是固定的,left就可以求出来。此时问题就是在集合nums中找出和为left的组合。
-
-
解题步骤
-
确定dp数组以及下标的含义:dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法。
-
确定递推公式:有nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
-
dp数组如何初始化:从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。
-
确定遍历顺序:nums放在外循环,target在内循环,且内循环倒序。
-
举例推导dp数组:
-
-
代码一:动态规划
// 时间复杂度:O(n × m),n为正数个数,m为背包容量
// 空间复杂度:O(m),m为背包容量
class Solution {
public:int findTargetSumWays(vector<int>& nums, int S) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (abs(S) > sum) return 0; // 此时没有方案if ((S + sum) % 2 == 1) return 0; // 此时没有方案int bagSize = (S + sum) / 2;vector<int> dp(bagSize + 1, 0);dp[0] = 1;for (int i = 0; i < nums.size(); i++) {for (int j = bagSize; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[bagSize];}
};
这篇关于算法训练 | 动态规划Part4 | 3. 416.分割等和子集、1049.最后一块石头的重量 II、494.目标和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!