代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的,


动态规划做题步骤

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划做题debug

  1. 找问题的最好方式就是把dp数组打印出来
  2. 做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

本题为动态规划入门题,根据题目进行模拟即可

1.确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2.确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3.dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

arr[0]=0;

arr[1]=1;

4.确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

class Solution {public int fib(int n) {if (n <= 1) {return n;}int[] arr = new int[2];arr[0] = 0;arr[1] = 1;for (int i = 2; i <= n; i++) {int sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return arr[1];}
}

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

     1.确定dp数组(dp table)以及下标的含义

          到达第i 层有dp[i]种方法

      2.确定递推公式

           dp[i]=dp[i-1]+dp[i-2]

      3.dp数组如何初始化

           dp[1]=1;  

          dp[2]=1;

     4.确定遍历顺序

         从前向后遍历

代码:

class Solution {public int climbStairs(int n) {if(n<=2){return n;}int[] arr = new int[2];arr[0] = 1;arr[1] = 2;for (int i = 3; i <= n; i++) {int sum = arr[0] + arr[1];arr[0] = arr[1];arr[1] = sum;}return arr[1];}
}

使用最小花费爬楼梯 

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

1.确定dp数组以及下标的含义

    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。  

2.确定递推公式

      dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

     dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

3.dp数组初始化

由题目可以知道你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。所以从0或1开始不需要花钱

dp[0]=0;dp[1]=0;

4.遍历顺序

从前向后

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length + 1];dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.length; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.length];}
}

这篇关于代码随想录算法训练营第38天|● 理论基础 ● 509. 斐波那契数● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070915

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr