超维小课堂 | 7、ROS使用offboard模式控制无人机定点悬停源码分析

本文主要是介绍超维小课堂 | 7、ROS使用offboard模式控制无人机定点悬停源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言:ROS使用offboard模式控制无人机进入定点悬停是学习ROS无人机控制的最经典的基本功能之一。基于此,本篇主要对此处的控制流程著一个简要的代码分析。(室内外通用代码)

顾名思义:offboard模式下的定点悬停是指通过机载电脑ROS发布指定的目标点,无人机按照程序发布的目标位置进行PID控制,到达后目标点后保持悬停不动。源码分析可以查看代码注释即可。

此处为视频详解:

源码视频详解:

特别注意:由于气压计以及GPS等定位存在漂移,会导致无人机在飞行过程中偏离程序设置的目标点。基于此,我们的代码已经对初始化漂移做了抵消,相对稳定,此处也是本此代码讲解的着重点。请确保使用我们的程序进行测试,否则可能造成无人机的失控

//包含ROS和MAVROS相关头文件 
#include <string> 
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
#include <move_base_msgs/MoveBaseAction.h>
#include <actionlib/client/simple_action_client.h>
#include <std_msgs/Bool.h>
#include <geometry_msgs/TwistStamped.h>
#include <mavros_msgs/PositionTarget.h>
#include <cmath>
#include <tf/transform_listener.h>
#include <nav_msgs/Odometry.h>
#include <mavros_msgs/CommandLong.h>   
#include <string>
#include <geometry_msgs/Twist.h>//室外宏定义飞行高度2米,室内可适当降低高度
#define ALTITUDE  2mavros_msgs::State current_state;
void state_cb(const mavros_msgs::State::ConstPtr& msg);
void state_cb(const mavros_msgs::State::ConstPtr& msg)
{current_state = *msg;
}//定义变量,用于接收无人机的里程计和姿态信息
tf::Quaternion quat; 
double roll, pitch, yaw;
float init_position_x_take_off =0;
float init_position_y_take_off =0;
float init_position_z_take_off =0;
bool  flag_init_position = false;
nav_msgs::Odometry local_pos;
void local_pos_cb(const nav_msgs::Odometry::ConstPtr& msg);
//回调函数接收无人机的里程计和姿态信息
void local_pos_cb(const nav_msgs::Odometry::ConstPtr& msg)
{local_pos = *msg;//程序启动后获取一次最新的GPS和气压计漂移数据作为初始值if (flag_init_position==false && (local_pos.pose.pose.position.z!=0)){init_position_x_take_off = local_pos.pose.pose.position.x;init_position_y_take_off = local_pos.pose.pose.position.y;init_position_z_take_off = local_pos.pose.pose.position.z;flag_init_position = true;          }//四元数转为欧拉角,后续程序使用tf::quaternionMsgToTF(local_pos.pose.pose.orientation, quat);   tf::Matrix3x3(quat).getRPY(roll, pitch, yaw);
}int main(int argc, char **argv)
{//初始化节点,ROSAPI接口ros::init(argc, argv, "offboard_single_position");//创建nh句柄,ROSAPI接口ros::NodeHandle nh;//创建订阅者,用于订阅无人机的当前飞行状态等信息ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/state", 10, state_cb);//创建发布者,发布无人机的期望位置ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>("mavros/setpoint_position/local", 10);//创建订阅者,订阅无人机的实时位置信息ros::Subscriber local_pos_sub = nh.subscribe<nav_msgs::Odometry>("/mavros/local_position/odom", 10, local_pos_cb);//创建无人机解锁客户端,用于想飞控请求解锁命令ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming");//创建模式切换客户端,用于ROS程序想底层飞控请求进入offbaord或者其他模式ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode");//offboard模式下,需要保持2Hz以上频率的心跳包,此处设置为20Hz,可适当调整ros::Rate rate(20.0);//等待连接飞控,连接后再执行后续部分while(ros::ok() && !current_state.connected){ros::spinOnce();rate.sleep();}//设置预发布位置,有了预发布位置,才能切入到offboard模式geometry_msgs::PoseStamped pose;pose.pose.position.x =init_position_x_take_off + 0;pose.pose.position.y =init_position_y_take_off + 0;pose.pose.position.z =init_position_z_take_off + ALTITUDE;//发布者发布期望位置for(int i = 100; ros::ok() && i > 0; --i){local_pos_pub.publish(pose);ros::spinOnce();rate.sleep();}//模式切换变量定义mavros_msgs::SetMode offb_set_mode;offb_set_mode.request.custom_mode = "OFFBOARD";//解锁变量定义mavros_msgs::CommandBool arm_cmd;arm_cmd.request.value = true;//获取系统当前时间给变量last_requestros::Time last_request = ros::Time::now();//此处满足一次请求进入offboard模式即可,官方例成循环切入offboard会导致无人机无法使用遥控器控制while(ros::ok()){//请求进入OFFBOARD模式,每隔5秒请求一次if( current_state.mode != "OFFBOARD" && (ros::Time::now() - last_request > ros::Duration(5.0))){if( set_mode_client.call(offb_set_mode) && offb_set_mode.response.mode_sent){ROS_INFO("Offboard enabled");}last_request = ros::Time::now();flag_init_position = false;         }else {//请求解锁,每隔5秒请求一次if( !current_state.armed && (ros::Time::now() - last_request > ros::Duration(5.0))){if( arming_client.call(arm_cmd) && arm_cmd.response.success){ROS_INFO("Vehicle armed");}last_request = ros::Time::now();flag_init_position = false;         }}//1、添加高度判断,使得无人机跳出模式切换循环,误差小于0.5米即认为已经达到if(fabs(local_pos.pose.pose.position.z- init_position_z_take_off -ALTITUDE)<0.5){   //延时三秒后推出循环if(ros::Time::now() - last_request > ros::Duration(3.0)){break;}}//2、添加时间判断,使得无人机跳出模式切换循环if(ros::Time::now() - last_request > ros::Duration(8.0)){break;}//此处添加是为增加无人机的安全性能,在实际测试过程中,采用某款国产的GPS和飞控,气压计和GPS定位误差极大,//导致了无人机起飞后直接飘走,高度和位置都不正常,无法跳出模式循环,导致遥控且无法接管//因此增加了时间判断,确保无人机在切入offboard模式和解锁后,确保任何情况下,8秒后遥控器都能切入其他模式接管无人机  //注意:一定要确定GPS和飞控传感器都是正常的//注意:一定要确定GPS和飞控传感器都是正常的//注意:一定要确定GPS和飞控传感器都是正常的//注意:一定要确定GPS和飞控传感器都是正常的//注意:一定要确定GPS和飞控传感器都是正常的//发布期望位置信息pose.pose.position.x =init_position_x_take_off + 0;pose.pose.position.y =init_position_y_take_off + 0;pose.pose.position.z =init_position_z_take_off + ALTITUDE;local_pos_pub.publish(pose);ros::spinOnce();rate.sleep();}       while(ros::ok()){//发布期望位置local_pos_pub.publish(pose);ros::spinOnce();//配合rate(20.0)使用,使得while按照20Hz的频率执行;rate.sleep();}return 0;
}

这篇关于超维小课堂 | 7、ROS使用offboard模式控制无人机定点悬停源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063702

相关文章

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M