代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

代码随想录 (programmercarl.com)

动态规划(Dynamic Programming,简称DP)是一种算法设计技术,它通过将复杂问题分解为更小的子问题来解决优化问题。动态规划通常用于解决那些具有重叠子问题和最优子结构特性的问题。(可以理解为一种递推)

重叠子问题:

        在递归算法中,相同的子问题会被多次计算。动态规划通过存储这些子问题的解来避免计算。这个存储通常使用一个表格(数组)来实现,称为备忘录或DP表。

最优子结构:

        一个问题的最优解包含其子问题的最优解。这意味着可以通过组合子问题的最优解来构造原问题的最优解。

动态规划的通常步骤:

  1. 定义状态:确定DP数组的含义,即dp[i]通常代表什么意义,比如在斐波那契数列问题中,dp[i]代表第i个斐波那契数。
  2. 状态转移方法:确定状态之间如何转移,即如何从一个或多个已知状态的值计算出下一个状态的值,如斐波那契数中 F[i] = F[i-1] + F[i-2]。
  3. 初始化:确定DP数组的初始值,这些通常关乎问题的边界条件。如斐波那契数中F[0] = 0,F[1] = 1。
  4. 计算顺序:确定DP数组的计算顺序,通常需要按照逻辑顺序从小到大计算。如斐波那契数列需要一次从2开始向后计算得到想要的值。
  5. 返回结果:根据DP数组的最终值来确定原问题的解。如返回你需要的斐波那契数。

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

递推顺序为 F(n) = F(n-1)+F(n-2)

F(0) = 0, F(1) = 1

class Solution {
public:int fib(int n) {// 如果 n 小于或等于 1,直接返回 n// 这是因为斐波那契数列的前两个数是定义好的:F(0) = 0, F(1) = 1if(n<=1) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储斐波那契数列vector<int>dp(n+1);// 初始化 dp 数组的前两个数,即 F(0) 和 F(1)dp[0] = 0;dp[1] = 1;// 从 2 开始循环到 n,计算 dp 数组的其余值for(int i = 2; i <= n; i++){// 根据斐波那契数列的定义,每个数是前两个数的和dp[i] = dp[i-1]+ dp[i-2];}// 返回 dp 数组的最后一个值,即斐波那契数列的第 n 个数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

斐波那契数的一个变体,开始没想到,想到之后只能感慨代码随想录的题目顺序还是很用心的。

假设爬到第i-1层有x种方案,爬到第i-2层有y种方案,那么爬到第i层有x+y种方案(第i-1层再向上爬一层达到i,第i-2层向上爬2层到达i层)。由此,就能看出这个问题是上述斐波那契数的变体。递推关系为dp[i] = dp[i-1] + dp[i-2],从前往后遍历,dp[0] = 0,dp[1] = 1,爬到1层只有一种方案,dp[2] =2,爬到2层有2种可能 1 1 和 2。具体代码如下,我考虑从3开始计算,最后返回dp[n]。

class Solution {
public:// 定义一个名为 climbStairs 的函数,用于计算爬到第 n 阶楼梯的方法数int climbStairs(int n) {// 如果 n 小于或等于 2,直接返回 n// 这是因为当楼梯阶数不超过 2 时,方法数与楼梯阶数相同if(n<=2) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储到达每一阶楼梯的方法数vector<int>dp(n+1);// 初始化 dp 数组的前三个数,即到达第 0、1、2 阶的方法数// 到达第 0 阶的方法数为 0,因为还没有开始爬,这里也可以认为是1,能减少一点代码量    // 这样dp[2]不用赋值dp[0] = 0;// 到达第 1 阶的方法数为 1,只能爬 1 阶dp[1] = 1;// 到达第 2 阶的方法数为 2,可以一次爬 2 阶或者分两次各爬 1 阶dp[2] = 2;// 从 3 开始循环到 n,计算 dp 数组的其余值for(int i = 3; i <= n; i++){// 根据问题的性质,到达第 i 阶的方法数是到达第 i-1 阶和第 i-2 阶的方法数之和// 这是因为每次你可以选择爬 1 阶或 2 阶,所以到达第 i 阶的方法可以从第 i-1 阶爬上来,或者从第 i-2 阶爬上来dp[i] = dp[i-1] + dp[i-2];}// 返回 dp 数组的最后一个值,即到达第 n 阶的方法数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

使用最小花费爬楼梯

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

这里同样是上述问题的变种,但需要考虑的是,这里不是找方案,而是计算损失,所以动态规划数组dp[i]代表的是到达n前的最小花费,到达第i层需要分别计算到达第i-1层和到达第i-2层的损失,然后选择较小的值作为dp[i]的值。由于在到达最终的n层前,每次到达一个i都需要起跳,所以需要添加损失,dp[i]为min(dp[i-1]+cost[i],dp[i-2]+cost[i]),而最后抵达n时,不再需要起跳,只需要考虑dp[n-1]和dp[n-2]的较小值,就是爬楼梯所需的最小花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 获取楼梯的阶数,即成本数组的大小int n = cost.size();// 创建一个动态数组 dp,大小为 n,用于存储到达每一阶楼梯的最小成本vector<int>dp(n);// 初始化 dp 数组的前两个数,即到达第 0、1 阶的最小成本// 到达第 0 阶的成本就是 cost[0]dp[0] = cost[0];// 到达第 1 阶的成本就是 cost[1]dp[1] = cost[1];// 从第 2 阶开始循环到第 n-1 阶,计算 dp 数组的其余值for(int i = 2; i < n; i++){// 到达第 i 阶的最小成本是到达第 i-1 阶和第 i-2 阶的最小成本加上当前阶梯的成本中的较小值// 这是因为每次你可以选择从第 i-1 阶爬上来或者从第 i-2 阶爬上来dp[i] = min(dp[i-1] + cost[i], dp[i-2] + cost[i]);}// 最后,到达楼顶的最小成本是到达倒数第一阶和倒数第二阶的最小成本中的较小值// 因为你可以从倒数第一阶直接到达楼顶,也可以从倒数第二阶直接到达楼顶return min(dp[n-2], dp[n-1]);}
};

算法的时间复杂度为O(n),遍历cost数组,并计算得到dp数组,空间复杂度同样为O(n),需要维护一个dp数组。

这篇关于代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062035

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖