代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

代码随想录 (programmercarl.com)

动态规划(Dynamic Programming,简称DP)是一种算法设计技术,它通过将复杂问题分解为更小的子问题来解决优化问题。动态规划通常用于解决那些具有重叠子问题和最优子结构特性的问题。(可以理解为一种递推)

重叠子问题:

        在递归算法中,相同的子问题会被多次计算。动态规划通过存储这些子问题的解来避免计算。这个存储通常使用一个表格(数组)来实现,称为备忘录或DP表。

最优子结构:

        一个问题的最优解包含其子问题的最优解。这意味着可以通过组合子问题的最优解来构造原问题的最优解。

动态规划的通常步骤:

  1. 定义状态:确定DP数组的含义,即dp[i]通常代表什么意义,比如在斐波那契数列问题中,dp[i]代表第i个斐波那契数。
  2. 状态转移方法:确定状态之间如何转移,即如何从一个或多个已知状态的值计算出下一个状态的值,如斐波那契数中 F[i] = F[i-1] + F[i-2]。
  3. 初始化:确定DP数组的初始值,这些通常关乎问题的边界条件。如斐波那契数中F[0] = 0,F[1] = 1。
  4. 计算顺序:确定DP数组的计算顺序,通常需要按照逻辑顺序从小到大计算。如斐波那契数列需要一次从2开始向后计算得到想要的值。
  5. 返回结果:根据DP数组的最终值来确定原问题的解。如返回你需要的斐波那契数。

斐波那契数

509. 斐波那契数 - 力扣(LeetCode)

递推顺序为 F(n) = F(n-1)+F(n-2)

F(0) = 0, F(1) = 1

class Solution {
public:int fib(int n) {// 如果 n 小于或等于 1,直接返回 n// 这是因为斐波那契数列的前两个数是定义好的:F(0) = 0, F(1) = 1if(n<=1) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储斐波那契数列vector<int>dp(n+1);// 初始化 dp 数组的前两个数,即 F(0) 和 F(1)dp[0] = 0;dp[1] = 1;// 从 2 开始循环到 n,计算 dp 数组的其余值for(int i = 2; i <= n; i++){// 根据斐波那契数列的定义,每个数是前两个数的和dp[i] = dp[i-1]+ dp[i-2];}// 返回 dp 数组的最后一个值,即斐波那契数列的第 n 个数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

爬楼梯

70. 爬楼梯 - 力扣(LeetCode)

斐波那契数的一个变体,开始没想到,想到之后只能感慨代码随想录的题目顺序还是很用心的。

假设爬到第i-1层有x种方案,爬到第i-2层有y种方案,那么爬到第i层有x+y种方案(第i-1层再向上爬一层达到i,第i-2层向上爬2层到达i层)。由此,就能看出这个问题是上述斐波那契数的变体。递推关系为dp[i] = dp[i-1] + dp[i-2],从前往后遍历,dp[0] = 0,dp[1] = 1,爬到1层只有一种方案,dp[2] =2,爬到2层有2种可能 1 1 和 2。具体代码如下,我考虑从3开始计算,最后返回dp[n]。

class Solution {
public:// 定义一个名为 climbStairs 的函数,用于计算爬到第 n 阶楼梯的方法数int climbStairs(int n) {// 如果 n 小于或等于 2,直接返回 n// 这是因为当楼梯阶数不超过 2 时,方法数与楼梯阶数相同if(n<=2) return n;// 创建一个动态数组 dp,大小为 n+1,用于存储到达每一阶楼梯的方法数vector<int>dp(n+1);// 初始化 dp 数组的前三个数,即到达第 0、1、2 阶的方法数// 到达第 0 阶的方法数为 0,因为还没有开始爬,这里也可以认为是1,能减少一点代码量    // 这样dp[2]不用赋值dp[0] = 0;// 到达第 1 阶的方法数为 1,只能爬 1 阶dp[1] = 1;// 到达第 2 阶的方法数为 2,可以一次爬 2 阶或者分两次各爬 1 阶dp[2] = 2;// 从 3 开始循环到 n,计算 dp 数组的其余值for(int i = 3; i <= n; i++){// 根据问题的性质,到达第 i 阶的方法数是到达第 i-1 阶和第 i-2 阶的方法数之和// 这是因为每次你可以选择爬 1 阶或 2 阶,所以到达第 i 阶的方法可以从第 i-1 阶爬上来,或者从第 i-2 阶爬上来dp[i] = dp[i-1] + dp[i-2];}// 返回 dp 数组的最后一个值,即到达第 n 阶的方法数return dp[n];}
};

算法的时间复杂度为O(n),空间复杂度同样为O(n),需要维护一个斐波那契数数组。

使用最小花费爬楼梯

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

这里同样是上述问题的变种,但需要考虑的是,这里不是找方案,而是计算损失,所以动态规划数组dp[i]代表的是到达n前的最小花费,到达第i层需要分别计算到达第i-1层和到达第i-2层的损失,然后选择较小的值作为dp[i]的值。由于在到达最终的n层前,每次到达一个i都需要起跳,所以需要添加损失,dp[i]为min(dp[i-1]+cost[i],dp[i-2]+cost[i]),而最后抵达n时,不再需要起跳,只需要考虑dp[n-1]和dp[n-2]的较小值,就是爬楼梯所需的最小花费。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {// 获取楼梯的阶数,即成本数组的大小int n = cost.size();// 创建一个动态数组 dp,大小为 n,用于存储到达每一阶楼梯的最小成本vector<int>dp(n);// 初始化 dp 数组的前两个数,即到达第 0、1 阶的最小成本// 到达第 0 阶的成本就是 cost[0]dp[0] = cost[0];// 到达第 1 阶的成本就是 cost[1]dp[1] = cost[1];// 从第 2 阶开始循环到第 n-1 阶,计算 dp 数组的其余值for(int i = 2; i < n; i++){// 到达第 i 阶的最小成本是到达第 i-1 阶和第 i-2 阶的最小成本加上当前阶梯的成本中的较小值// 这是因为每次你可以选择从第 i-1 阶爬上来或者从第 i-2 阶爬上来dp[i] = min(dp[i-1] + cost[i], dp[i-2] + cost[i]);}// 最后,到达楼顶的最小成本是到达倒数第一阶和倒数第二阶的最小成本中的较小值// 因为你可以从倒数第一阶直接到达楼顶,也可以从倒数第二阶直接到达楼顶return min(dp[n-2], dp[n-1]);}
};

算法的时间复杂度为O(n),遍历cost数组,并计算得到dp数组,空间复杂度同样为O(n),需要维护一个dp数组。

这篇关于代码随想录算法训练营Day38|动态规划理论基础、2.斐波那契数、3.爬楼梯、4.使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1062035

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(