策梅洛定理 (博弈论): Zermelo's theorem

2024-06-10 01:08

本文主要是介绍策梅洛定理 (博弈论): Zermelo's theorem,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很有意思的一个定理。

转载地址为http://blog.sina.com.cn/s/blog_4b91d3b501010hcj.html

策梅洛定理(英语:Zermelo's theorem)是博弈论的一条定理,以恩斯特·策梅洛命名。定理表示在二人的有限游戏中,如果双方皆拥有完全的资讯,并且运气因素并不牵涉在游戏中,那先行或后行者当中必有一方有必胜/必不败的策略。若应用至国际象棋,则策梅洛定理表示"要么黑方有必胜之策略、要么白方有必胜之策略、要么双方有必不败之策略"。

策梅洛的论文于1913年以德文发表,并被Ulrich Schwalbe和Paul Walker于1997年译为英文。

 

定理具体内容:

在一个双人游戏中,满足:

0. 双人轮流行动

1. 有限步。比如国际象棋好像重复出现三次相同的棋局判和

2. 信息完备。所谓信息完备,大概是玩家明确知道所有之前的步骤。

3. 仅有3种结局,对于玩家1只有:赢,和,输三种结局

当满足上述条件的游戏,只会出现下面情况之一:

1. 玩家1有必胜招。就是玩家1按照某种特定的走法,不论玩家2如何努力,玩家1都可以赢

2. 玩家1有必和招。

3. 玩家2有必胜招。


当然,有些游戏是有后手优势的,先走的人倒霉。 

证明方式就是传说中被很多人认为stupid的数学归纳法(Induction)。

 

Zermelo's theorem的证明大意:

N是某一游戏的最大步长,比如我们下棋,玩很多很多次,其中最多回合的一次,是大战300回合后我赢了,那么N=600。对N进行数学归纳法,

 

  • 数学归纳法第一步:

N=1时,Zermelo's theorem显然成立。

玩家1,只用走一步,就可决定输赢。按照游戏的规定,也许有胜负和三种,那么玩家1显然选择胜的走法,于是满足玩家1有必胜招

 

  • 数学归纳法第二步:

假设i<=N时命题成立,试图证明i=N+1时命题成立

考虑N+1时的子游戏,除去玩家1走的第一步以后的游戏部分。玩家1第一步的每一种走法都会产生一个新游戏起始状态,它的最大步长<=N的,从数学归纳法第二步可知,每个子游戏有唯一确定的结果,玩家1必然会赢、输或者和。于是等价于N=1的情况了!相当于玩家1在第一步的时候来选择进入哪个游戏,是自己必赢还是必输还是必和。

 

  • 数学归纳法第三步:
总结:该结论对于所有的正整数都成立。

这篇关于策梅洛定理 (博弈论): Zermelo's theorem的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1046816

相关文章

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

CPC23三 K.(Lucas定理)

K.喵喵的神·数 Time Limit: 1 Sec Memory Limit: 128 MB Description 喵喵对组合数比较感兴趣,并且对计算组合数非常在行。同时为了追求有后宫的素质的生活,喵喵每天都要研究质数。 我们先来复习一下什么叫做组合数。对于正整数P、T 然后我们再来复习一下什么叫质数。质数就是素数,如果说正整数N的约数只有1和它本身,N

量化交易面试:什么是中心极限定理?

中心极限定理(Central Limit Theorem, CLT)是概率论和统计学中的一个重要定理,它描述了在一定条件下,独立随机变量的和的分布趋向于正态分布的性质。这个定理在量化交易和金融分析中具有重要的应用价值。以下是对中心极限定理的详细解释: 基本概念: 中心极限定理指出,当我们从一个具有任意分布的总体中抽取足够大的样本时,样本均值的分布将近似于正态分布,无论原始总体的分布是什么样的。

中国剩余定理和扩展中国剩余定理(模板)

给你一元线性同余方程组,如下: 其中,当  ,  , ... ,  两两互质的话就是中国剩余定理 , 不互质的话就是扩展中国剩余定理。 给出中国剩余定理的计算过程和扩展中国剩余定理的推理过程: #include<bits/stdc++.h>using namespace std;#define int long long#define endl '\n'#define

等式(数论/唯一分解定理)

链接: https://www.nowcoder.com/acm/contest/90/F 来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数。(x、y、n均为正整数) 输入描述: 在第一行输入一个正整数T。接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数。(1<=n<=1e9) 输出描述: 输出符合该方程要求的解数。

数论 - 算数基本定理的运用 --- nefu 118 : n!后面有多少个0

题目链接: http://acm.nefu.edu.cn/JudgeOnline/problemshow.php   Mean:   略。 analyse:  刚开始想了半天都没想出来,数据这么大,难道是有什么公式? 首先我们要知道一点:n!里面所有的0都是2*5得来的,而且不管怎样2的数量一定是>5的数量,所以我们只需要考虑有多少个5就可。 后面也是看了解题报告才知道有

数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

Sum  Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704   Mean:  给定一个大整数N,求1到N中每个数的因式分解个数的总和。   analyse: N可达10^100000,只能用数学方法来做。 首先想到的是找规律。通过枚举小数据来找规律,发现其实answer=pow(2,n-1);

HDU 1573X问题(扩展中国剩余定理)

Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。 Input 输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 <

POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)

Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000KTotal Submissions: 6809 Accepted: 2960 Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果