本文主要是介绍POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Time Limit: 5000MS | Memory Limit: 10000K | |||
Total Submissions: 6809 | Accepted: 2960 | Special Judge |
Description
未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, ..., xn,请你给出每两个湖泊之间的相连关系。
Input
第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,..., xn(0 ≤ xi ≤ N)。
Output
对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input
3 7 4 3 1 5 4 2 1 6 4 3 1 4 2 0 6 2 3 1 1 2 1
Sample Output
YES 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 NOYES 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
Source
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>using namespace std;
struct node
{int in,d;
}num[15];
int cmp(node a,node b)
{if(a.d==b.d)return a.in<b.in;else return a.d>b.d;
}
int mmap[15][15];
int main()
{int t,n,i,j;cin>>t;while(t--){int f=0;memset(mmap,0,sizeof(mmap));memset(num,0,sizeof(num));cin>>n;for(i=0;i<n;i++){cin>>num[i].d;num[i].in=i;}sort(num,num+n,cmp);for(i=0;i<n;i++){sort(num+i,num+n,cmp);if(num[i].d+i>n-1){f=1;break;}for(j=1;j<=num[i].d;j++){num[i+j].d--;if(num[i+j].d==-1){f=1;break;}mmap[num[i].in][num[j+i].in]=mmap[num[j+i].in][num[i].in]=1;}}if(f)cout<<"NO\n";else{cout<<"YES\n";for(i=0;i<n;i++){cout<<mmap[i][0];for(j=1;j<n;j++){cout<<" "<<mmap[i][j];}cout<<endl;}}cout<<endl;}return 0;
}
这篇关于POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!