POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)

本文主要是介绍POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Frogs' Neighborhood
Time Limit: 5000MS Memory Limit: 10000K
Total Submissions: 6809 Accepted: 2960 Special Judge

Description

未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

Sample Input

3
7
4 3 1 5 4 2 1 
6
4 3 1 4 2 0 
6
2 3 1 1 2 1 

Sample Output

YES
0 1 0 1 1 0 1 
1 0 0 1 1 0 0 
0 0 0 1 0 0 0 
1 1 1 0 1 1 0 
1 1 0 1 0 1 0 
0 0 0 1 1 0 0 
1 0 0 0 0 0 0 NOYES
0 1 0 0 1 0 
1 0 0 1 1 0 
0 0 0 0 0 1 
0 1 0 0 0 0 
1 1 0 0 0 0 
0 0 1 0 0 0 

Source

POJ Monthly--2004.05.15 Alcyone@pku
解题报告
这方面是图论的知识,给定一个非负整数组成的有限序列S,判断S是否是某个图的度序列。
Havel-Hakimi定理
由非负整数组成的非增序列S:d1,d2...,dn(n>=2,d1>=1)是可图的,当且仅当S1中有n-1个非负整数,S序列中d1后面的前d1个度数
(即d2~d(d1+1))减1后构成S1中的前d1个数。
举例:序列S:7,7,4,3,3,3,2,1  删除序列S的首项 7 ,对其后的7项每项减1,得到:6,3,2,2,2,1,0,继续删除序列的首项6,对其后的6项每项减1,得到:2,1,1,1,0,-1,到这一步出现了负数,因此该序列是不可图的
这思想好像是贪心的。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>using namespace std;
struct node
{int in,d;
}num[15];
int cmp(node a,node b)
{if(a.d==b.d)return a.in<b.in;else return a.d>b.d;
}
int mmap[15][15];
int main()
{int t,n,i,j;cin>>t;while(t--){int f=0;memset(mmap,0,sizeof(mmap));memset(num,0,sizeof(num));cin>>n;for(i=0;i<n;i++){cin>>num[i].d;num[i].in=i;}sort(num,num+n,cmp);for(i=0;i<n;i++){sort(num+i,num+n,cmp);if(num[i].d+i>n-1){f=1;break;}for(j=1;j<=num[i].d;j++){num[i+j].d--;if(num[i+j].d==-1){f=1;break;}mmap[num[i].in][num[j+i].in]=mmap[num[j+i].in][num[i].in]=1;}}if(f)cout<<"NO\n";else{cout<<"YES\n";for(i=0;i<n;i++){cout<<mmap[i][0];for(j=1;j<n;j++){cout<<" "<<mmap[i][j];}cout<<endl;}}cout<<endl;}return 0;
}


这篇关于POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1135551

相关文章

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

POJ1631最长单调递增子序列

最长单调递增子序列 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.util.StringTokenizer;publ

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

easyui同时验证账户格式和ajax是否存在

accountName: {validator: function (value, param) {if (!/^[a-zA-Z][a-zA-Z0-9_]{3,15}$/i.test(value)) {$.fn.validatebox.defaults.rules.accountName.message = '账户名称不合法(字母开头,允许4-16字节,允许字母数字下划线)';return fal