CPC23三 K.(Lucas定理)

2024-09-07 20:08
文章标签 定理 lucas cpc23

本文主要是介绍CPC23三 K.(Lucas定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

K.喵喵的神·数
Time Limit: 1 Sec Memory Limit: 128 MB

Description

喵喵对组合数比较感兴趣,并且对计算组合数非常在行。同时为了追求有后宫的素质的生活,喵喵每天都要研究质数。
我们先来复习一下什么叫做组合数。对于正整数P、T

然后我们再来复习一下什么叫质数。质数就是素数,如果说正整数N的约数只有1和它本身,N就是质数;另外,1不是质数。

今天,喵喵想要知道



Input

输入第一行是一个整数N(N<=1000)。

接下来N行,每行包括一个正整数T和一个质数P(1<=P<=T<231)。

Output

包括N行,根据输入的顺序,每一行为一个整数:

Sample Input

2
3 2
10 3

Sample Output

1




解题思路:

       用lucas定理解决。Lucas定理是用来求 c(n,m) mod p的值,p是素数(从n取m组合,模上p)。lucas定理如下:

Lucas(n,m,p)=c(n%p,m%p)* Lucas(n/p,m/p,p)
Lucas(x,0,p)=1;
       在本题中m = p,所以c(n%p,m%p) = c(n%p,0) = 1 ,所以Lucas(n,m,p) = Lucas(n/p,m/p,p) = Lucas(n/p,1,p) = c(n/p , 1) mod p = (n / p)% p。



完整代码:
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <climits>
#include <cassert>
#include <complex>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")typedef long long LL;
typedef double DB;
typedef unsigned uint;
typedef unsigned long long uLL;/** Constant List .. **/ //{const int MOD = int(1e9)+7;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const DB EPS = 1e-9;
const DB OO = 1e20;
const DB PI = acos(-1.0); //M_PI;int main()
{#ifdef DoubleQfreopen("in.txt","r",stdin);#endifint n;scanf("%d",&n);{while(n--){int t , p;while(~scanf("%d%d",&t,&p)){printf("%d\n" , (t / p) % p);}}}
}




这篇关于CPC23三 K.(Lucas定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146033

相关文章

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

CPC23第三场、第四场总结

这两天跟着Arthur学长们混了两天现场赛,有种打怪升级的感觉,就是90级的老大们带30级的我去打100级的BOSS,看着Arthur他们在不断的输出,我在一旁水经验·······不过我也没闲着玩泥巴,在status里留下了一大片WA、TLE、RE··········         CPC23第三场,开场19分钟,Arthur全场一A了C题,于是我就开始跟着切C题。看了一眼题目

量化交易面试:什么是中心极限定理?

中心极限定理(Central Limit Theorem, CLT)是概率论和统计学中的一个重要定理,它描述了在一定条件下,独立随机变量的和的分布趋向于正态分布的性质。这个定理在量化交易和金融分析中具有重要的应用价值。以下是对中心极限定理的详细解释: 基本概念: 中心极限定理指出,当我们从一个具有任意分布的总体中抽取足够大的样本时,样本均值的分布将近似于正态分布,无论原始总体的分布是什么样的。

中国剩余定理和扩展中国剩余定理(模板)

给你一元线性同余方程组,如下: 其中,当  ,  , ... ,  两两互质的话就是中国剩余定理 , 不互质的话就是扩展中国剩余定理。 给出中国剩余定理的计算过程和扩展中国剩余定理的推理过程: #include<bits/stdc++.h>using namespace std;#define int long long#define endl '\n'#define

等式(数论/唯一分解定理)

链接: https://www.nowcoder.com/acm/contest/90/F 来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数。(x、y、n均为正整数) 输入描述: 在第一行输入一个正整数T。接下来有T行,每行输入一个正整数n,请求出符合该方程要求的解数。(1<=n<=1e9) 输出描述: 输出符合该方程要求的解数。

数论 - 算数基本定理的运用 --- nefu 118 : n!后面有多少个0

题目链接: http://acm.nefu.edu.cn/JudgeOnline/problemshow.php   Mean:   略。 analyse:  刚开始想了半天都没想出来,数据这么大,难道是有什么公式? 首先我们要知道一点:n!里面所有的0都是2*5得来的,而且不管怎样2的数量一定是>5的数量,所以我们只需要考虑有多少个5就可。 后面也是看了解题报告才知道有

数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

Sum  Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704   Mean:  给定一个大整数N,求1到N中每个数的因式分解个数的总和。   analyse: N可达10^100000,只能用数学方法来做。 首先想到的是找规律。通过枚举小数据来找规律,发现其实answer=pow(2,n-1);

HDU 1573X问题(扩展中国剩余定理)

Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … (0 < a[i] <= 10)。 Input 输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 <

POJ1659_Frogs' Neighborhood(判断一个度数序列是否可图/Havel-Hakimi定理)

Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000KTotal Submissions: 6809 Accepted: 2960 Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果