群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线)

本文主要是介绍群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

人工蜂群优化算法(Artificial Bee Colony Algorithm, ABC)是由Dervis Karaboga在2005年提出的一种模拟蜜蜂觅食行为的优化算法。该算法基于蜜蜂群体的分工合作和信息交流机制,通过模拟蜜蜂寻找食物源的过程来解决优化问题。ABC算法因其简单、灵活和有效的特点,被广泛应用于各类优化问题,如函数优化、数据挖掘、路径规划等

概念

ABC算法主要模拟了三类蜜蜂的行为:雇佣蜂、观察蜂和侦查蜂。

雇佣蜂(Employed Bees):负责在食物源附近进行局部搜索,并将食物源的信息传递给观察蜂。
观察蜂(Onlooker Bees):在蜂巢中通过观察雇佣蜂的舞蹈选择食物源进行进一步搜索。
侦查蜂(Scout Bees):负责在全局范围内随机搜索新的食物源,以替代那些被淘汰的食物源。

步骤

初始化:在搜索空间内随机生成若干个食物源(即解),并计算其适应度值。
雇佣蜂阶段:
每只雇佣蜂在其对应的食物源附近随机选择一个新的解。
计算新解的适应度值,如果新解优于当前解,则更新当前解。
观察蜂阶段:
观察蜂根据雇佣蜂的舞蹈(适应度值)选择食物源,进行局部搜索。
与雇佣蜂阶段类似,计算新解的适应度值并进行更新。
侦查蜂阶段:
对于那些长时间未被改进的食物源,由侦查蜂进行全局随机搜索,以寻找新的潜在食物源。
终止条件:重复上述步骤直到满足终止条件(如达到最大迭代次数或满足精度要求)。

本文示例

模拟了机器人在一个二维平面内的路径规划问题,目标是找到一条最优路径,使得机器人能够从起点移动到终点,避开障碍物

路径规划问题定义

假设一个二维平面中有若干障碍物,机器人需要从起点(Start)移动到终点(Goal),避开所有障碍物,找到一条最短路径

代码

clc;
clear;% 参数设置
numBees = 50; % 蜂群规模(食物源数量)
maxIter = 1000; % 最大迭代次数
limit = 100; % 限制参数,用于判断是否需要启用侦查蜂
dim = 2; % 问题维度
numObstacles = 10; % 障碍物数量
mapSize = [100, 100]; % 地图大小% 起点和终点位置
startPoint = [10, 10];
endPoint = [90, 90];% 障碍物位置
obstacles = rand(numObstacles, 2) .* repmat(mapSize, numObstacles, 1);% 初始化食物源
foodSources = rand(numBees, dim) .* repmat(mapSize, numBees, 1);
fitness = calculateFitness(foodSources, startPoint, endPoint, obstacles, mapSize);
trials = zeros(numBees, 1);% 绘制地图
figure;
hold on;
axis([0 mapSize(1) 0 mapSize(2)]);
plot(startPoint(1), startPoint(2), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
plot(endPoint(1), endPoint(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
for i = 1:numObstaclesplot(obstacles(i, 1), obstacles(i, 2), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');
end% 主循环
for iter = 1:maxIter% 雇佣蜂阶段for i = 1:numBeesk = randi([1, dim]);phi = rand * 2 - 1;newSolution = foodSources(i, :);newSolution(k) = foodSources(i, k) + phi * (foodSources(i, k) - foodSources(randi([1, numBees]), k));newFitness = calculateFitness(newSolution, startPoint, endPoint, obstacles, mapSize);if newFitness < fitness(i)foodSources(i, :) = newSolution;fitness(i) = newFitness;trials(i) = 0;elsetrials(i) = trials(i) + 1;endend% 观察蜂阶段prob = fitness / sum(fitness);for i = 1:numBeesif rand < prob(i)k = randi([1, dim]);phi = rand * 2 - 1;newSolution = foodSources(i, :);newSolution(k) = foodSources(i, k) + phi * (foodSources(i, k) - foodSources(randi([1, numBees]), k));newFitness = calculateFitness(newSolution, startPoint, endPoint, obstacles, mapSize);if newFitness < fitness(i)foodSources(i, :) = newSolution;fitness(i) = newFitness;trials(i) = 0;elsetrials(i) = trials(i) + 1;endendend% 侦查蜂阶段for i = 1:numBeesif trials(i) > limitfoodSources(i, :) = rand(1, dim) .* mapSize;fitness(i) = calculateFitness(foodSources(i, :), startPoint, endPoint, obstacles, mapSize);trials(i) = 0;endend% 绘制当前最优路径[bestFitness, bestIndex] = min(fitness);bestSolution = foodSources(bestIndex, :);plotPath(startPoint, bestSolution, endPoint, obstacles);drawnow;
end% 计算适应度函数
function fitness = calculateFitness(solutions, startPoint, endPoint, obstacles, mapSize)numSolutions = size(solutions, 1);fitness = zeros(numSolutions, 1);for j = 1:numSolutionssolution = solutions(j, :);path = [startPoint; solution; endPoint];pathLength = 0;for i = 1:(size(path, 1) - 1)pathLength = pathLength + norm(path(i, :) - path(i + 1, :));endfor i = 1:size(obstacles, 1)if min(sqrt(sum((path - obstacles(i, :)).^2, 2))) < 5pathLength = pathLength + 10000; % 惩罚因子endendfitness(j) = pathLength;end
end% 绘制路径
function plotPath(startPoint, solution, endPoint, obstacles)path = [startPoint; solution; endPoint];plot(path(:, 1), path(:, 2), 'b-o');plot(startPoint(1), startPoint(2), 'go', 'MarkerSize', 10, 'MarkerFaceColor', 'g');plot(endPoint(1), endPoint(2), 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');for i = 1:size(obstacles, 1)plot(obstacles(i, 1), obstacles(i, 2), 'ks', 'MarkerSize', 10, 'MarkerFaceColor', 'k');end
end

效果

在这里插入图片描述

说明

初始化部分:

设置蜂群规模、最大迭代次数等参数。
定义地图大小、起点和终点的位置,以及障碍物的位置。
初始化食物源(即路径中的中间点)和计算初始适应度。

主循环部分:
雇佣蜂阶段:雇佣蜂在当前食物源附近进行局部搜索,并根据适应度值决定是否更新食物源。
观察蜂阶段:观察蜂根据雇佣蜂的舞蹈(适应度值)选择食物源进行进一步搜索。
侦查蜂阶段:对长时间未被改进的食物源进行全局随机搜索,以寻找新的潜在食物源。
实时绘制当前最优路径,以便观察算法的收敛过程。

适应度函数:
计算路径的总长度作为适应度值,同时对路径经过障碍物的情况进行惩罚,以避免路径穿越障碍物。

路径绘制:
绘制当前最优路径、起点、终点和障碍物,以便观察路径规划的效果

这篇关于群体优化算法----人工蜂群优化算法应用于路径规划(机器人避开平面障碍寻找最短路线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029443

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in