版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp Software packages are complex. Shouldn't software books make it easier? Simplify your life with the Foc
一、目标检测之RetinaNet(Focal Loss) Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002论文翻译:https://blog.csdn.net/PPLLO_o/article/details/88952923论文详解:https://blog.csdn.net/JNingWei
论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 在网上找了一下,有一位博主尝试写了一个,但是没有实现类别平衡。于是我继续了这位博主的工作,添加了类别平衡。在我的数据集上表现的很好。 这几天做一个图像分类的项目,每个标签的训练集数量差别很大,分类难易程度差别也很大,于是想用Focal
Is desktop virtualization the next focal point? I’m still getting my feet under me after my travel to New England, New York and New Jersey this week. So, I’m going to post a few things conc
Paper地址:https://arxiv.org/abs/2111.11837 GitHub链接:https://github.com/yzd-v/FGD 方法 FGKD(Focal and Global Knowledge Distillation)通过Focal distillation与Global distillation的结合,兼顾了Instance-level信息、Sp
转自:https://blog.csdn.net/qq_34564947/article/details/77200104 Focal Loss for Dense Object Detection 引入问题 目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-