【深度学习】Focal Loss 损失函数

2024-08-21 19:12

本文主要是介绍【深度学习】Focal Loss 损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Focal Loss 损失函数

1. Focal Loss 介绍

Focal Loss 是一种专门设计用于处理类别不平衡问题的损失函数,特别是在目标检测任务中表现出色。它最早由 Facebook AI Research (FAIR) 提出的,在物体检测中,如 RetinaNet,解决了正负样本严重不平衡的问题。
论文链接:Focal Loss for Dense Object Detection

2. 背景

在许多实际应用中,如目标检测,类别不平衡是一个常见问题。例如,在一个图像中,背景(负样本)通常占据大多数,而目标物体(正样本)很少。传统的交叉熵损失(Cross-Entropy Loss)可能会导致模型过度关注负样本,从而忽视正样本,特别是难以检测的正样本。Focal Loss 通过将注意力集中在难以分类的样本上,来解决这个问题。

3. Focal Loss 定义

Focal Loss 的公式如下:
F L ( p t ) = − α t ( 1 − p t ) γ l o g ( p t ) FL(p_t) = -\alpha _t(1-p_t)^\gamma log(p_t) FL(pt)=αt(1pt)γlog(pt)

其中

  • p t p_t pt 是模型对目标类的预测概率
  • α t \alpha _t αt平衡因子,用于调整正负样本之间的影响。
  • γ \gamma γ焦点因子,用于调整难易样本的权重。

(1) 交叉熵损失

Focal Loss 基于二分类交叉熵损失(Binary Cross-Entropy Loss)。传统的交叉熵损失可以表示为:
B C E ( p t ) = − l o g ( p t ) BCE(p_t) = -log(p_t) BCE(pt)=log(pt)
其中, p t p_t pt 是模型对正确类别的预测概率。

(2) 平衡因子 α t \alpha_t αt

平衡正负样本: α t \alpha_t αt 用于平衡正负样本的影响,防止负样本过多对损失的贡献:

  • 对于正样本, α t = α \alpha_t = \alpha αt=α
  • 对于负样本, α t = 1 − α \alpha_t = 1-\alpha αt=1α

通常, α \alpha α 的值在 [0,1] 之间,表示正负样本的权重比例。对于目标检测任务, α \alpha α可以设为正样本和负样本的比例。

(3) 焦点因子 γ \gamma γ

焦点因子 γ \gamma γ:通过引入焦点因子 γ \gamma γFocal Loss 调整了模型对易分类样本和难分类样本的关注程度。公式中的 ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ部分是关键:

  • 当预测概率 p t p_t pt 接近 1(即样本容易分类), ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ会非常小,减少了损失的贡献。
  • 当预测概率 p t p_t pt 接近 0(即样本难以分类), ( 1 − p t ) γ (1-p_t)^\gamma (1pt)γ 会变大,增加了损失的权重,从而让模型更加关注这些难分类的样本。

焦点因子 γ \gamma γ 通常设为2,但可以根据具体问题调整。更大的 γ \gamma γ 会使得模型更加专注于难分类样本。

4. 使用场景

  • 目标检测:Focal Loss 最初用于目标检测任务,如 RetinaNet,因为目标检测中的正负样本严重不平衡。通过聚焦于难分类的目标,Focal Loss 提高了模型对目标的检测能力。
  • 其他类别不平衡任务:Focal Loss 也可以应用于其他类别不平衡的分类任务,如文本分类或医学图像分析。

5. Focal Loss代码实现(Pytorch)

# -*- coding: utf-8 -*-
# @time: 2024/8/21 16:54import torch
import torch.nn as nn# Focal Loss 的 PyTorch 示例实现
class FocalLoss(nn.Module):def __init__(self, alpha=0.25, gamma=2, reduction='mean'):super(FocalLoss, self).__init__()self.alpha = alphaself.gamma = gammaself.reduction = reductiondef forward(self, inputs, targets):# 计算 logits 的 sigmoid 概率p = torch.sigmoid(inputs)# 计算交叉熵损失bce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction='none')# 计算 Focal Lossalpha = self.alpha * targets + (1 - self.alpha) * (1 - targets)focal_loss = alpha * ((1 - p) ** self.gamma) * bce_loss# 根据 reduction 参数进行损失归约if self.reduction == 'mean':return focal_loss.mean()elif self.reduction == 'sum':return focal_loss.sum()else:return focal_loss# 使用示例
criterion = FocalLoss(alpha=0.25, gamma=2)
inputs = torch.randn(4, requires_grad=True)
targets = torch.empty(4).random_(2)
loss = criterion(inputs, targets)print(inputs)
print(targets)
print(loss)

输出结果

tensor([-0.7896, -0.1952, -0.7318, -2.2900], requires_grad=True)
tensor([0., 0., 0., 1.])
tensor(0.2236, grad_fn=<MeanBackward0>)

6. 总结

Focal Loss 是一种处理类别不平衡问题的有效方法,通过引入焦点因子和调整样本权重,使得模型对难以分类的样本更加关注,从而提高分类性能。它特别适用于目标检测和其他类别不平衡的任务。

这篇关于【深度学习】Focal Loss 损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094040

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N