下载mysql安装包 #根据ldd --version的信息, 下载的是glic 2.28的包。下载地址:https://downloads.mysql.com/archives/community/包名:mysql-8.0.37-linux-glibc2.28-x86_64.tar.xz #root用户操作#系统环境:BigCloud Enterprise Linux For E
Square digit chains Problem 92 A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before. For example, 44 → 32
定义 欧拉函数 ϕ(n)=count(p),p∈[1,n] AND gcd(p,n)=1 \phi(n)=count(p),p\in[1,n]\ \mathrm{AND} \ gcd(p,n)=1,其中 count(p) count(p)表示满足上述条件 p p的数目。公式ϕ(n)=n∏p|n(1−1p)\phi(n)=n\prod_{p|n}(1-\dfrac{1}{p}) 其中, p p
题目:Triangular, pentagonal, and hexagonal Triangle, pentagonal, and hexagonal numbers are generated by the following formulae: Triangle Tn=n(n+1)/2 1, 3, 6, 10, 15, ...Pentagonal Pn=n(3n1)/2 1, 5, 12
题目:Factorial digit sum n! means n (n 1) ... 3 2 1 For example, 10! = 10 9 ... 3 2 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the di
题目:Champernowne's constant An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fraction
题目:Counting Sundays You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday.Thirty days has September, April, June and November. All the
题目:Largest product in a grid In the 2020 grid below, four numbers along a diagonal line have been marked in red. 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 6
题目:Maximum path sum I Maximum path sum II By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5
题目:Power digit sum 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000? 这个题目在于大数乘法以及减枝。 数学描述 首先有个结论,如下: 那么,N = 21000时,C(N)=30
文章目录 圆周率 π \pi π 和 Euler 常数 e e e 的构造圆周率 π \pi π 的构造Euler常数e的构造 本篇文章适合个人复习翻阅,不建议新手入门使用 圆周率 π \pi π 和 Euler 常数 e e e 的构造 圆周率 π \pi π 的构造 我们将以下数列的极限定义为 π \pi π L n = n ⋅ sin 18 0