本文主要是介绍UVA 1342 - That Nice Euler Circuit(计算几何+欧拉定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
大白上的例题
思路:首先要知道欧拉定理, 顶点数V,边数E,面数F,那么有V + F - E = 2
那么剩下就是根据已有的图形,计算出有多少个顶点和多少条边,就能计算出面数了
于是暴力计算几何搞搞即可
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;struct Point {double x, y;Point() {}Point(double x, double y) {this->x = x;this->y = y;}void read() {scanf("%lf%lf", &x, &y);}
};typedef Point Vector;Vector operator + (Vector A, Vector B) {return Vector(A.x + B.x, A.y + B.y);
}Vector operator - (Vector A, Vector B) {return Vector(A.x - B.x, A.y - B.y);
}Vector operator * (Vector A, double p) {return Vector(A.x * p, A.y * p);
}Vector operator / (Vector A, double p) {return Vector(A.x / p, A.y / p);
}bool operator < (const Point& a, const Point& b) {return a.x < b.x || (a.x == b.x && a.y < b.y);
}const double eps = 1e-8;int dcmp(double x) {if (fabs(x) < eps) return 0;else return x < 0 ? -1 : 1;
}bool operator == (const Point& a, const Point& b) {return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
}double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积
double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模
double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角
double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积
double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积//向量旋转
Vector Rotate(Vector A, double rad) {return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
}//计算两直线交点,平行,重合要先判断
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {Vector u = P - Q;double t = Cross(w, u) / Cross(v, w);return P + v * t;
}//点到直线距离
double DistanceToLine(Point P, Point A, Point B) {Vector v1 = B - A, v2 = P - A;return fabs(Cross(v1, v2)) / Length(v1);
}//点到线段距离
double DistanceToSegment(Point P, Point A, Point B) {if (A == B) return Length(P - A);Vector v1 = B - A, v2 = P - A, v3 = P - B;if (dcmp(Dot(v1, v2)) < 0) return Length(v2);else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);else return fabs(Cross(v1, v2)) / Length(v1);
}//点在直线上的投影点
Point GetLineProjection(Point P, Point A, Point B) {Vector v = B - A;return A + v * (Dot(v, P - A) / Dot(v, v));
}//线段相交判定(规范相交)
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}//判断点在线段上, 不包含端点
bool OnSegment(Point p, Point a1, Point a2) {return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
}//n边形的面积
double PolygonArea(Point *p, int n) {double area = 0;for (int i = 1; i < n - 1; i++)area += Cross(p[i] - p[0], p[i + 1] - p[0]);return area / 2;
}const int N = 305;
int n;
Point p[N], v[N * N];int main() {int cas = 0;while (~scanf("%d", &n) && n) {for (int i = 0; i < n; i++) {p[i].read();v[i] = p[i];}n--;int vn = n, e = n;for (int i = 0; i < n; i++) {for (int j = i + 1; j < n; j++) {if (SegmentProperIntersection(p[i], p[i + 1], p[j], p[j + 1])) {v[vn++] = GetLineIntersection(p[i], p[i + 1] - p[i], p[j], p[j + 1] - p[j]);}}}sort(v, v + vn);vn = unique(v, v + vn) - v;for (int i = 0; i < vn; i++) {for (int j = 0; j < n; j++) {if (OnSegment(v[i], p[j], p[j + 1]))e++;}}printf("Case %d: There are %d pieces.\n", ++cas, e - vn + 2);}return 0;
}
这篇关于UVA 1342 - That Nice Euler Circuit(计算几何+欧拉定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!