引言 近年来,生成式人工智能(AIGC)在图像和视频生成领域取得了巨大突破。然而,谁能想到,这项技术正逐渐渗透进游戏开发领域,且潜力巨大。2023年8月29日,谷歌DeepMind发布了名为《扩散模型是实时游戏引擎》(Diffusion Models Are Real-Time Game Engines)的论文,提出了全新的AI游戏生成引擎GameNGen。令人惊讶的是,GameNGen无需传统
近日,哈佛大学的研究人员与谷歌DeepMind AI 实验室合作,开发出了一种虚拟大鼠模型,以研究大脑如何控制真实老鼠的运动。这个创新的模型准确地模拟了在真实大鼠身上观察到的神经活动,可以用于探讨大脑是如何控制动物的运动行为。 该重磅研究《A virtual rodent predicts the structure of neural activity across behaviors》已于
点击上方“AI公园”,关注公众号,选择加“星标“或“置顶” 作者:Michelle Gong, Anton Zhernov 编译:ronghuaiyang 导读 DeepMind和Google Play合作,推动了 Play Store 的发现系统的重大改进,为用户提供更加个性化和直观的 Play Store 体验。 在过去的几年中,我们把 DeepMind 的技术应用到了谷歌产品和基础
来源:机器之心 本文约3800字,建议阅读9分钟 AlphaFold 2,128块TPU大力出奇迹,让别人无路可走。 CASP14 组织者、年近七旬的 UC Davis 科学家 Andriy Kryshtafovych 在大会上感叹道,I wasn't sure that I would live long enough to see this(我活久见了)[1]。 11 月 30 日,一条重
AI 科技评论按:不管你让小孩还是大人整理物品,他们很大可能都不会乖乖听你的话,如果想要让 AI 智能体进行整理收拾,那就更难了。如果想成功,需要掌握如下几个核心视觉运动技能:接近物体,抓住并举起它,打开盒子,把物体放进去。而更复杂的是,执行这些技能时,必须按照正确的顺序。 对于一些控制类的任务,比如整理桌面或堆叠物体,智能体需要在协调它的模拟手臂和手指的九个关节时,做到三个 W,即如何(ho
一、简介 最近大家比较关心的围棋人机大战(alphago vs 李世石)中,deep mind基于Nature2016文章的alphago在5局制的比赛中已经取得了3-1的成绩提前锁定了胜局。2016年google与facebook两个大拿在围棋领域基于深度学习都发表了文章,其中facebook文章如下:《BETTER COMPUTER GO PLAYER WITH NEU