DeepMind成功使用深度强化学习技术完美控制核聚变反应堆!

本文主要是介绍DeepMind成功使用深度强化学习技术完美控制核聚变反应堆!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

d6943045fc71cfcc8479201dea393b9a.png

本文经AI新媒体量子位(公众号ID:qbitai)授权转载,转载请联系出处。
本文约1400字,建议阅读5分钟
DeepMind开发出世界上第一个深度强化学习AI。

DeepMind在蛋白质折叠问题上实现巨大突破后,目标又转向核聚变了。

最近,它开发出了世界上第一个深度强化学习AI——可以在模拟环境和真正的核聚变装置(托卡马克)中实现对等离子体的自主控制。

陌生名词不要急,后面马上解释。

ffccb607a878132bcdb40e9dcb6c2993.png

这比传统的计算机控制要更高效且精准,成果登上今天的Nature。

0fb28baaa61560ad8612d1764989aae2.png

作为强化学习最具有挑战性的一个应用,这一成果也对加速可控核聚变有很大意义。

用强化学习控制核聚变反应

核聚变是未来最有潜力的清洁能源:只靠一个原子核就能产生巨大能量,除了相对少量的放射性废物(可在一个世纪内分解),不会产生任何温室气体。

c3dd7d16e962208c0b4eaac9d79a397d.png

但要在地球上实现这一反应无比困难,需要制造一个极端高温和高压的条件,在其中创建一个由裸原子核组成的“等离子体”。

磁约束聚变装置——托卡马克(tokamak),是最有希望的一个实现方法。

它是一个环形反应堆,可以在超过1亿摄氏度的环境下把氢加热(superheat)成等离子体的状态。

2e01b0091915dfcd4f56cd968577d529.png

托卡马克内部图

由于等离子体温度太高,任何材料都无法容纳,要通过强大的磁场将它悬浮在托卡马克内部。

在操作磁线圈时必须非常仔细,因为一旦碰壁,就可能导致容器损坏,并减缓聚变反应。

而一个托卡马克装共有19个磁线圈,一秒需要调整线圈及其电压数千次。

传统的装置中,每个线圈配备单独的控制器。

每当研究人员想要改变等离子体的结构,尝试不同的形状以产生更高的能量时,就需要大量的工程和设计工作。

DeepMind这个强化学习系统则可以一次控制全部19个线圈,并精确操纵等离子体自主呈现各种形状,呈现产生科学家们一直在探索的更高能量的新配置:

比如下图中第二个“负三角”以及第四个“雪花”(这个形状可以通过将废能量分散到托卡马克壁上的不同接触点来降低冷却成本)。

以及第一个“droplets”,这也是第一次在托卡马克内同时稳定两个等离子体。

03d644915b38f26258c074a04b2a8b85.gif

这个AI系统由DeepMind和瑞士洛桑联邦理工学院等离子体中心的物理学家共同完成。

瑞士中心的一位成员表示:“这里面有的形状已经逼近装置的极限,很可能对系统造成损坏,如果不是AI给的信心,我们可能不会冒这个险。”

这个AI是在模拟器中通过反复试验来训练的。

在核聚变研究中,模拟器非常有必要,因为目前运行的反应堆一次只能维持等离子体最多几秒钟,之后需要时间来重置。

5f8b198c14b74cd26f350fd14cdb6152.png

不过一个问题是:该模拟器并没有准确捕获真实托卡马克中存在的所有变量,能迁移到真正的托卡马克上吗?

对此,DeepMind研究员表示,通过用随机数表示足够训练出一个灵活的AI。

另一个问题是:为了保持对托卡马克内部等离子体的控制,控制算法必须能够做出极快的决定,在短短几秒钟内对磁场进行调整。但许多人工智能系统在如此高速的环境下需要很长时间才能做出预测。

为此,该团队先训练了一个大型神经网络,它可以对磁场的变化如何塑造等离子体进行长程预测(longer-term prediction)。

然后用这个网络来训练一个远小得多的系统,学习执行第一个网络所推荐的决策的最佳方法。

这个较小的网络能与托卡马克控制系统直接交互,在不到50微秒(50百万分之一秒)的时间内做出决定。

最后,作者表示,虽然这个成果意义非凡,但只是朝着人类实现可控核聚变迈出了一小步。

比如实现一秒钟的实时运行需要模拟托卡马克数小时的时间,而它的条件每天都可能发生变化,算法还需各方面改进。

此外,还要看现在这个系统能否转移到更大的托卡马克装置中。

聚变能源何时实现商用还很难说,但DeepMind断言,人工智能可以加速这一过程。

不知道它能否再次像AlphaFold一样,在核聚变领域实现惊艳全世界的新成果。

拭目以待。

(也有一些网友在担心,要是控制核聚变的AI哪天想不开……)

论文地址:
https://www.nature.com/articles/s41586-021-04301-9

参考链接:
[1]https://venturebeat.com/2022/02/16/deepmind-applies-ai-to-controlling-nuclear-fusion-reactors/ 

[2]https://fortune.com/2022/02/16/deepmind-ai-nuclear-fusion-reactor-control/

编辑:于腾凯

d82e82a42456f998687f6870c8381bc0.png

这篇关于DeepMind成功使用深度强化学习技术完美控制核聚变反应堆!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900950

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传