【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。

本文主要是介绍【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

改进A*算法的优点分析

改进A*算法相对于传统A*算法在多个方面进行了优化,包括避免斜穿障碍物顶点、删除中间多余节点以及提高搜索效率。这些改进措施使得路径规划更加高效、安全和可靠,特别是在复杂环境中表现尤为突出。本文将详细讨论这些改进及其带来的优点。

1. 避免斜穿障碍物顶点,避免碰撞

在路径规划过程中,斜穿障碍物顶点会带来很大的风险,可能导致机器人或自动驾驶车辆与障碍物发生碰撞。传统的A*算法在扩展邻接节点时,没有考虑这一点,可能会选择那些斜穿障碍物顶点的路径,从而增加碰撞的风险。改进A*算法通过对邻接节点的严格检查,避免了这种情况的发生。

具体来说,改进A*算法在扩展当前节点的邻接节点时,会检测这些节点是否与障碍物顶点相邻,如果是,则不将该节点加入开放列表。这样一来,生成的路径将不会斜穿任何障碍物顶点,从而避免了潜在的碰撞风险。这种约束确保了路径的安全性,提高了算法在实际应用中的可靠性。

这一改进在实际应用中具有重要意义。特别是在机器人导航、无人机飞行和自动驾驶等领域,路径的安全性至关重要。通过避免斜穿障碍物顶点,改进A*算法能够生成更安全、更可靠的路径,有效避免潜在的碰撞风险。这不仅保护了设备的安全,还保护了周围环境和人类的安全。

2. 删除中间多余节点,减少转折

传统A*算法生成的路径往往包含许多不必要的中间节点,这些节点会增加路径的转折点,使路径变得曲折,从而增加行驶时间和能耗。改进A*算法通过优化路径,删除不必要的中间节点,从而减少转折点,使路径更加平滑。

在路径生成过程中,改进A*算法首先生成一条初始路径,然后对该路径进行进一步优化。具体来说,算法会检查路径中的每个节点,并删除那些不影响路径连通性的中间节点。这一优化过程显著减少了路径中的转折点,使路径更加平滑和直观。

这种改进不仅减少了机器人或车辆的行驶时间和能耗,还提高了路径的效率和可靠性。平滑的路径意味着机器人或车辆可以更高效地移动,减少了频繁转向的时间和能量消耗。同时,减少转折点也降低了路径规划的复杂性,使得算法在实际应用中更加易于实现。

3. 提高搜索效率

改进A*算法在提高搜索效率方面也做了许多优化。传统A*算法在搜索过程中,会扩展大量的节点,特别是在复杂环境中,计算量非常大。改进A*算法通过多种方式提高了搜索效率,包括优化启发函数和调整节点扩展策略。

首先,改进A*算法使用了一种改进的启发函数,结合了路径成本和障碍率的因素,使得评价函数更加准确。这种启发函数不仅考虑了当前路径的成本,还考虑了从当前节点到目标节点之间的障碍物数量,从而更准确地评估每个节点的优先级。具体来说,评价函数采用了以下形式:

𝑓(𝑛)=𝑔(𝑛)+(1−log⁡(𝑃))⋅ℎ(𝑛)​ g(n)是当前节点到目标节点的估计成本,h(n) 是起始点与目标点之间的障碍率,表示障碍物的数量与栅格总数之比。通过引入障碍率,改进A*算法能够更有效地避开障碍物,提高了路径规划的效率。

其次,改进A*算法在扩展节点时,会优先扩展那些更有可能通向目标节点的节点。具体来说,算法会根据启发函数的值对邻接节点进行排序,优先扩展那些评价函数值较小的节点,从而减少了不必要的计算量。这些优化措施显著提高了算法的搜索效率,特别是在复杂环境中,能够更快地找到最优路径。

4. 路径的三次优化

改进A*算法不仅在初始路径生成时进行了优化,还通过多次优化进一步提高了路径的质量。具体来说,改进A*算法在生成初始路径后,会对路径进行三次优化,分别删除不必要的中间节点、调整路径使其更加平滑以及进一步删除转折点。

第一次优化通过Line_OPEN_ST函数对路径进行处理,删除不必要的中间节点。第二次优化通过Line_OPEN_STtwo函数进一步平滑路径,减少转折点。第三次优化再次通过Line_OPEN_STtwo函数对路径进行调整,确保路径尽可能直。

这种多次优化的策略使得最终生成的路径不仅安全可靠,而且平滑高效。这在实际应用中具有重要意义,特别是在复杂环境中,优化后的路径能够更好地适应环境的变化,提高路径规划的鲁棒性和适应性。

5. 实际应用中的效果

通过对比传统A*算法和改进A*算法在实际应用中的效果,可以看出改进A*算法在多个方面表现出了显著的优势。在路径的安全性方面,改进A*算法通过避免斜穿障碍物顶点,有效减少了潜在的碰撞风险,保证了路径的安全可靠。在路径的平滑性方面,改进A*算法通过删除中间多余节点和减少转折,使路径更加直观和平滑,提高了路径的效率和可靠性。在搜索效率方面,改进A*算法通过优化启发函数和调整节点扩展策略,显著减少了计算量,提高了路径规划的速度。

例如,在机器人导航中,改进A*算法能够生成更加安全和平滑的路径,使机器人能够更高效地到达目标位置。在自动驾驶中,改进A*算法能够生成更加可靠和高效的行驶路径,减少车辆的行驶时间和能耗。在无人机飞行中,改进A*算法能够生成更加安全和高效的飞行路径,避免碰撞风险,提高飞行效率。

6. 进一步改进的潜力

尽管改进A*算法在多个方面表现出优越的性能,但仍有进一步改进的潜力。首先,在处理动态环境时,改进A*算法可以结合实时环境感知技术,动态调整路径,提高路径规划的实时性和适应性。其次,在处理多目标路径规划时,改进A*算法可以结合多目标优化算法,同时考虑多个目标,提高路径规划的综合性能。此外,改进A*算法还可以结合机器学习技术,通过学习环境特征和路径规划经验,进一步提高路径规划的效率和可靠性。

总结

改进A*算法通过避免斜穿障碍物顶点、删除中间多余节点和提高搜索效率,在路径规划中展现出优越的性能。具体来说,这些改进使得路径更加安全、平滑和高效,特别适用于机器人导航、无人机飞行和自动驾驶等领域。

  1. 避免斜穿障碍物顶点:通过严格检查邻接节点,避免路径斜穿障碍物顶点,提高了路径的安全性和可靠性。

  2. 删除中间多余节点,减少转折:通过路径优化,删除不必要的中间节点,使路径更加平滑,减少了行驶时间和能耗。

  3. 提高搜索效率:通过优化启发函数和节点扩展策略,减少了不必要的计算量,显著提高了算法的搜索效率。

  4. 路径的三次优化:通过三次优化策略,进一步提高了路径的质量,使路径更加平滑和高效。

  5. 实际应用中的效果:在机器人导航、自动驾驶和无人机飞行等实际应用中,改进A*算法展现出了显著的优势。

  6. 进一步改进的潜力:结合实时环境感知、多目标优化和机器学习技术,改进A*算法具有进一步提升的潜力。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994120

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO