文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于多能微电网在面对多种不确定性因素(如新能源出力和负荷需求波动)时的两阶段分布鲁棒优化调度模型的研究。以下是文章的主要要点:

  1. 研究背景:微电网作为中低压配电网络的重要组成部分,需要有效应对新能源出力和负荷需求的不确定性,以保障系统的安全稳定运行。

  2. 模型构建:文章提出了一个考虑协变量因素的多能微电网两阶段分布鲁棒优化调度模型。该模型包括光伏发电单元、冷热电联产单元、冷热电负荷和热能储存等组成部分。

  3. 模糊集建立:利用基于多元决策树回归的Wasserstein模糊集描述源荷双侧不确定性以及协变量因素之间的关系,以改进调度模型的可靠性和经济性。

  4. 模型求解:通过线性决策规则和对偶定理,将模型转换为混合整数线性规划问题,从而可以求解得到日前最优调度决策。

  5. 算例分析:将模型应用于一个改进的33节点多能微电网系统进行算例分析,结果表明引入协变量因素可以有效提高模型的经济性,并且在蒙特卡洛样本外测试中显示出良好的可靠性。

  6. 研究结论:文章所提出的两阶段分布鲁棒优化调度模型在考虑协变量因素的情况下,能够实现对经济性和鲁棒性的平衡,有效应对不确定性波动。

  7. 未来研究方向:文章指出,协变量因素的数量和质量对不确定量预测误差的影响尚未明确,如何更高效合理地建立考虑协变量因素的分布鲁棒优化调度框架将是未来研究的重点。

为了复现仿真实验,以下是需要遵循的步骤和相应的程序语言表示(以Python为例):

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from scipy.optimize import linprog
import numpy as np# 假设数据文件包含光伏出力、电力负荷、气温和日照强度
data = pd.read_csv('historical_data.csv')# 分离自变量和因变量
X = data[['temperature', 'solar_intensity']]
y = data[['pv_output', 'electric_load_demand']]# 多元决策树回归分析
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X, y)# 构建Wasserstein模糊集(这里需要根据实际的协变量和回归结果来构建)
def wasserstein_ambiguity_set(regressor, X, epsilon):# 此处应包含构建模糊集的具体逻辑# 由于这是一个复杂的过程,可能需要多个步骤和辅助函数来完成pass# 线性化模型中的非线性部分
def linearize_model(model):# 此处应包含模型线性化的具体逻辑pass# 求解分布鲁棒优化模型
def solve_distributionally_robust_optimization(model):# 此处应包含模型求解的具体逻辑# 使用线性规划方法求解c = [...]  # 目标函数的系数A_eq = [...]  # 等式约束矩阵b_eq = [...]  # 等式约束向量bounds = [...]  # 变量的上下界result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')return result# 蒙特卡洛仿真验证模型鲁棒性
def monte_carlo_simulation(model, n_samples):# 此处应包含蒙特卡洛仿真的具体逻辑# 生成随机样本并评估模型性能pass# 主程序
if __name__ == "__main__":# 进行多元决策树回归分析regressor = DecisionTreeRegressor(random_state=0)regressor.fit(X, y)# 构建Wasserstein模糊集epsilon = 0.1  # Wasserstein半径,需要根据实际情况确定ambiguity_set = wasserstein_ambiguity_set(regressor, X, epsilon)# 线性化模型linearized_model = linearize_model(regressor)# 求解分布鲁棒优化模型optimization_result = solve_distributionally_robust_optimization(linearized_model)# 进行蒙特卡洛仿真验证simulation_result = monte_carlo_simulation(regressor, n_samples=1000)# 输出结果print("优化结果:", optimization_result)print("仿真结果:", simulation_result)

在上述代码中,我们首先使用pandas库加载历史数据,然后使用sklearn库中的DecisionTreeRegressor进行多元决策树回归分析。接着,我们定义了三个函数来构建Wasserstein模糊集、线性化模型和求解分布鲁棒优化模型。最后,我们通过蒙特卡洛仿真来验证模型的鲁棒性,并打印出优化结果和仿真结果。

请注意,上述代码中的wasserstein_ambiguity_setlinearize_modelsolve_distributionally_robust_optimization函数的具体实现需要根据实际的数学模型和算法来完成。这些函数的实现细节可能会非常复杂,并且需要专业的数学和编程知识。此外,模型参数(如Wasserstein半径epsilon)的选取需要根据实际情况进行调整。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988270

相关文章

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可