文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于多能微电网在面对多种不确定性因素(如新能源出力和负荷需求波动)时的两阶段分布鲁棒优化调度模型的研究。以下是文章的主要要点:

  1. 研究背景:微电网作为中低压配电网络的重要组成部分,需要有效应对新能源出力和负荷需求的不确定性,以保障系统的安全稳定运行。

  2. 模型构建:文章提出了一个考虑协变量因素的多能微电网两阶段分布鲁棒优化调度模型。该模型包括光伏发电单元、冷热电联产单元、冷热电负荷和热能储存等组成部分。

  3. 模糊集建立:利用基于多元决策树回归的Wasserstein模糊集描述源荷双侧不确定性以及协变量因素之间的关系,以改进调度模型的可靠性和经济性。

  4. 模型求解:通过线性决策规则和对偶定理,将模型转换为混合整数线性规划问题,从而可以求解得到日前最优调度决策。

  5. 算例分析:将模型应用于一个改进的33节点多能微电网系统进行算例分析,结果表明引入协变量因素可以有效提高模型的经济性,并且在蒙特卡洛样本外测试中显示出良好的可靠性。

  6. 研究结论:文章所提出的两阶段分布鲁棒优化调度模型在考虑协变量因素的情况下,能够实现对经济性和鲁棒性的平衡,有效应对不确定性波动。

  7. 未来研究方向:文章指出,协变量因素的数量和质量对不确定量预测误差的影响尚未明确,如何更高效合理地建立考虑协变量因素的分布鲁棒优化调度框架将是未来研究的重点。

为了复现仿真实验,以下是需要遵循的步骤和相应的程序语言表示(以Python为例):

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from scipy.optimize import linprog
import numpy as np# 假设数据文件包含光伏出力、电力负荷、气温和日照强度
data = pd.read_csv('historical_data.csv')# 分离自变量和因变量
X = data[['temperature', 'solar_intensity']]
y = data[['pv_output', 'electric_load_demand']]# 多元决策树回归分析
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X, y)# 构建Wasserstein模糊集(这里需要根据实际的协变量和回归结果来构建)
def wasserstein_ambiguity_set(regressor, X, epsilon):# 此处应包含构建模糊集的具体逻辑# 由于这是一个复杂的过程,可能需要多个步骤和辅助函数来完成pass# 线性化模型中的非线性部分
def linearize_model(model):# 此处应包含模型线性化的具体逻辑pass# 求解分布鲁棒优化模型
def solve_distributionally_robust_optimization(model):# 此处应包含模型求解的具体逻辑# 使用线性规划方法求解c = [...]  # 目标函数的系数A_eq = [...]  # 等式约束矩阵b_eq = [...]  # 等式约束向量bounds = [...]  # 变量的上下界result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')return result# 蒙特卡洛仿真验证模型鲁棒性
def monte_carlo_simulation(model, n_samples):# 此处应包含蒙特卡洛仿真的具体逻辑# 生成随机样本并评估模型性能pass# 主程序
if __name__ == "__main__":# 进行多元决策树回归分析regressor = DecisionTreeRegressor(random_state=0)regressor.fit(X, y)# 构建Wasserstein模糊集epsilon = 0.1  # Wasserstein半径,需要根据实际情况确定ambiguity_set = wasserstein_ambiguity_set(regressor, X, epsilon)# 线性化模型linearized_model = linearize_model(regressor)# 求解分布鲁棒优化模型optimization_result = solve_distributionally_robust_optimization(linearized_model)# 进行蒙特卡洛仿真验证simulation_result = monte_carlo_simulation(regressor, n_samples=1000)# 输出结果print("优化结果:", optimization_result)print("仿真结果:", simulation_result)

在上述代码中,我们首先使用pandas库加载历史数据,然后使用sklearn库中的DecisionTreeRegressor进行多元决策树回归分析。接着,我们定义了三个函数来构建Wasserstein模糊集、线性化模型和求解分布鲁棒优化模型。最后,我们通过蒙特卡洛仿真来验证模型的鲁棒性,并打印出优化结果和仿真结果。

请注意,上述代码中的wasserstein_ambiguity_setlinearize_modelsolve_distributionally_robust_optimization函数的具体实现需要根据实际的数学模型和算法来完成。这些函数的实现细节可能会非常复杂,并且需要专业的数学和编程知识。此外,模型参数(如Wasserstein半径epsilon)的选取需要根据实际情况进行调整。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988270

相关文章

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL之InnoDB存储页的独立表空间解读

《MySQL之InnoDB存储页的独立表空间解读》:本文主要介绍MySQL之InnoDB存储页的独立表空间,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、独立表空间【1】表空间大小【2】区【3】组【4】段【5】区的类型【6】XDES Entry区结构【

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Python变量与数据类型全解析(最新整理)

《Python变量与数据类型全解析(最新整理)》文章介绍Python变量作为数据载体,命名需遵循字母数字下划线规则,不可数字开头,大小写敏感,避免关键字,本文给大家介绍Python变量与数据类型全解析... 目录1、变量变量命名规范python数据类型1、基本数据类型数值类型(Number):布尔类型(bo

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase