文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于多能微电网在面对多种不确定性因素(如新能源出力和负荷需求波动)时的两阶段分布鲁棒优化调度模型的研究。以下是文章的主要要点:

  1. 研究背景:微电网作为中低压配电网络的重要组成部分,需要有效应对新能源出力和负荷需求的不确定性,以保障系统的安全稳定运行。

  2. 模型构建:文章提出了一个考虑协变量因素的多能微电网两阶段分布鲁棒优化调度模型。该模型包括光伏发电单元、冷热电联产单元、冷热电负荷和热能储存等组成部分。

  3. 模糊集建立:利用基于多元决策树回归的Wasserstein模糊集描述源荷双侧不确定性以及协变量因素之间的关系,以改进调度模型的可靠性和经济性。

  4. 模型求解:通过线性决策规则和对偶定理,将模型转换为混合整数线性规划问题,从而可以求解得到日前最优调度决策。

  5. 算例分析:将模型应用于一个改进的33节点多能微电网系统进行算例分析,结果表明引入协变量因素可以有效提高模型的经济性,并且在蒙特卡洛样本外测试中显示出良好的可靠性。

  6. 研究结论:文章所提出的两阶段分布鲁棒优化调度模型在考虑协变量因素的情况下,能够实现对经济性和鲁棒性的平衡,有效应对不确定性波动。

  7. 未来研究方向:文章指出,协变量因素的数量和质量对不确定量预测误差的影响尚未明确,如何更高效合理地建立考虑协变量因素的分布鲁棒优化调度框架将是未来研究的重点。

为了复现仿真实验,以下是需要遵循的步骤和相应的程序语言表示(以Python为例):

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from scipy.optimize import linprog
import numpy as np# 假设数据文件包含光伏出力、电力负荷、气温和日照强度
data = pd.read_csv('historical_data.csv')# 分离自变量和因变量
X = data[['temperature', 'solar_intensity']]
y = data[['pv_output', 'electric_load_demand']]# 多元决策树回归分析
regressor = DecisionTreeRegressor(random_state=0)
regressor.fit(X, y)# 构建Wasserstein模糊集(这里需要根据实际的协变量和回归结果来构建)
def wasserstein_ambiguity_set(regressor, X, epsilon):# 此处应包含构建模糊集的具体逻辑# 由于这是一个复杂的过程,可能需要多个步骤和辅助函数来完成pass# 线性化模型中的非线性部分
def linearize_model(model):# 此处应包含模型线性化的具体逻辑pass# 求解分布鲁棒优化模型
def solve_distributionally_robust_optimization(model):# 此处应包含模型求解的具体逻辑# 使用线性规划方法求解c = [...]  # 目标函数的系数A_eq = [...]  # 等式约束矩阵b_eq = [...]  # 等式约束向量bounds = [...]  # 变量的上下界result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')return result# 蒙特卡洛仿真验证模型鲁棒性
def monte_carlo_simulation(model, n_samples):# 此处应包含蒙特卡洛仿真的具体逻辑# 生成随机样本并评估模型性能pass# 主程序
if __name__ == "__main__":# 进行多元决策树回归分析regressor = DecisionTreeRegressor(random_state=0)regressor.fit(X, y)# 构建Wasserstein模糊集epsilon = 0.1  # Wasserstein半径,需要根据实际情况确定ambiguity_set = wasserstein_ambiguity_set(regressor, X, epsilon)# 线性化模型linearized_model = linearize_model(regressor)# 求解分布鲁棒优化模型optimization_result = solve_distributionally_robust_optimization(linearized_model)# 进行蒙特卡洛仿真验证simulation_result = monte_carlo_simulation(regressor, n_samples=1000)# 输出结果print("优化结果:", optimization_result)print("仿真结果:", simulation_result)

在上述代码中,我们首先使用pandas库加载历史数据,然后使用sklearn库中的DecisionTreeRegressor进行多元决策树回归分析。接着,我们定义了三个函数来构建Wasserstein模糊集、线性化模型和求解分布鲁棒优化模型。最后,我们通过蒙特卡洛仿真来验证模型的鲁棒性,并打印出优化结果和仿真结果。

请注意,上述代码中的wasserstein_ambiguity_setlinearize_modelsolve_distributionally_robust_optimization函数的具体实现需要根据实际的数学模型和算法来完成。这些函数的实现细节可能会非常复杂,并且需要专业的数学和编程知识。此外,模型参数(如Wasserstein半径epsilon)的选取需要根据实际情况进行调整。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑协变量因素的多能微电网两阶段分布鲁棒优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/988270

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja