【强化学习-Mode-Free DRL】深度强化学习如何选择合适的算法?DQN、DDPG、A3C等经典算法Mode-Free DRL算法的四个核心改进方向

本文主要是介绍【强化学习-Mode-Free DRL】深度强化学习如何选择合适的算法?DQN、DDPG、A3C等经典算法Mode-Free DRL算法的四个核心改进方向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【强化学习-DRL】深度强化学习如何选择合适的算法?

  • 引言:本文第一节先对DRL的脉络进行简要介绍,引出Mode-Free DRL。
  • 第二节对Mode-Free DRL的两种分类进行简要介绍,并对三种经典的DQL算法给出其交叉分类情况;
  • 第三节对Mode-Free DRL的四个核心(改进方向)进行说明。
  • 第四节对DQN的四个核心进行介绍。

DRL的发展脉络

  • DRL沿着Mode-Based和Mode-Free两个脉络发展。
  • Mode-Based:利用已知环境模型或未知环境模型进行显式建,并与前向搜索(Look Ahead Search)和轨迹优化(Trajectory Optimization)等规划算法结合达到提升数据效率的目的。相比而言,Mode-Based更加复杂,在实践中应用较少,在学术研究中使用较多。
  • 本文对Mode-Free系列的方法进行介绍。

Mode-Free DRL算法的分类

  • 按照不同的分类可以分为:Value-Based方法、Policy-Based方法。以及Off-Policy、On-Policy。
  • DQN、DDPG、A3C是三种非常非常经典的方法,也是DRL的研究重点,后续提出的新算法基本都立足于这三种框架。DQN、DDPG、A3C在上述两种分类方式下交叉分类情况如下图。
    请添加图片描述

Mode-Free DRL算法的四个核心(改进方向)

  • Mode-Free DRL算法的核心为:基本原理、探索方式、样本管理、梯度计算。
  • 基本原理:基本原理层面进展缓慢,但是DRL未来大规模应用的关键所在。
  • 探索方式: 探索方式的改进使得DRL算法更加充分地探索环境,以更好地平衡探索和利用,从而有机会学习到更好的策略。
    • 如为了改善DQN的探索,使用噪声网络(Noisy Net)代替默认的 ϵ − G r e e d y \epsilon-Greedy ϵGreedy
  • 样本管理:样本管理的改进,有助于提升DRL算法的样本效率,从而加快收敛速度,提高算法实用性。
    • 如为了提升样本效率,可以将常规经验回放改为优先经验回放(Prioritized Experience Replay,PER)
  • 梯度计算:梯度计算的改进致力于使每一次梯度更新都稳定、无偏和高效。
    • 如为了提高训练稳定性,在计算目标值时由单步Bootstrap改为多步Bootstrap。

DQN

  • 我们以DQN为例子对Mode-Free DRL算法的四个核心进行说明。

基本原理

  • DQN(Deep Q-Networks)继承了Q-Learning的思想,利用贝尔曼公式的Bootstrap特性,根据式子1计算目标值并不断迭代一个状态动作估值函数 Q θ ( s , a ) Q_\theta(s,a) Qθ(s,a),直到收敛。
    J Q ( θ ) = E s , a ∼ D [ 1 2 r ( s , a ) + γ m a x a ′ ∈ A Q θ − ( s ′ , a ′ ) − Q θ ( s , a ) 2 ] J_{Q}(\theta) = E_{s,a \sim D}[\frac{1}{2} r(s,a) + \gamma max_{a' \in A } Q_{\theta ^- } (s',a') - Q_{\theta}(s,a)^2] JQ(θ)=Es,aD[21r(s,a)+γmaxaAQθ(s,a)Qθ(s,a)2]

探索方式

  • DQN使用 ϵ − G r e e d y \epsilon-Greedy ϵGreedy 的探索策略。 ϵ \epsilon ϵ ( 0 , 1 ] (0,1] (0,1]由大到小现行变化,DQN相应地实现从“强探索利用”逐渐过渡到“弱探索利用”。

样本管理

  • DQN使用Off-Policy,即采集样本策略与当前待优化策略不一致的方法。
  • DQN使用Replay Buffer的先入先出堆栈结构存储训练过程中采集的单步转移样本 ( s , a , s ′ , r ′ ) (s,a,s',r') (s,a,s,r) ,并每次从中选择一个Batch进行梯度计算和参数更新。
  • Replay Buffer允许重复利用隶属数据,以Batch为单位进行训练覆盖了更大的状态空间,中和了单个样本计算梯度时的Variance(方差),时DQN训练和提高样本效率的重要措施。

梯度计算

  • 为克服Bootstrap带来的训练不稳定。DQN设置了一个与Q网络完全相同的目标Q网络。目标Q网络专门用于计算下一步的Q值,参数用 θ − \theta^- θ表示。目标网络的参数并不每次都迭代更新,而是每N次迭代后从主Q网络中将参数拷贝过来,这样做可以有效提升DQN的训练稳定性。

A3C

  • DQN和DDPG都属于Off-Policy算法,都利用了贝尔曼公式的Bootstrap特性来更新Q网络。该方法具有运行利用历史数据,带来样本效率提升的同时,导致训练稳定性较差,并且目标值的计算不是无偏的,普遍存在overstimation问题,不利于累积回报的梯度回传。
  • 与Off-Policy算法基于单步转移样本 ( s , a , s ′ , r ) (s,a,s',r) (s,a,s,r)不同,On-Policy算法利用蒙特卡洛方法通过最新策略随机采集多个完整Episode获得当前值函数 V ( s ) V(s) V(s) 的无偏估计,从而提高了训练性能。
  • A3C(Asynchronous Advantage Actor-Critic)是 On-Policy DRL的经典代表。
  • A3C的具体四个核心我们之后文章中会进行分析,敬请关注收藏。

参考文献

  • 深度强化学习落地指南

这篇关于【强化学习-Mode-Free DRL】深度强化学习如何选择合适的算法?DQN、DDPG、A3C等经典算法Mode-Free DRL算法的四个核心改进方向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979846

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

如何选择适合孤独症兄妹的学校?

在探索适合孤独症儿童教育的道路上,每一位家长都面临着前所未有的挑战与抉择。当这份责任落在拥有孤独症兄妹的家庭肩上时,选择一所能够同时满足两个孩子特殊需求的学校,更显得尤为关键。本文将探讨如何为这样的家庭做出明智的选择,并介绍星贝育园自闭症儿童寄宿制学校作为一个值得考虑的选项。 理解孤独症儿童的独特性 孤独症,这一复杂的神经发育障碍,影响着儿童的社交互动、沟通能力以及行为模式。对于拥有孤独症兄