使用QLoRA在自定义数据集上finetuning 大模型 LLAMA3 的数据比对分析

本文主要是介绍使用QLoRA在自定义数据集上finetuning 大模型 LLAMA3 的数据比对分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述:

大型语言模型(LLM)展示了先进的功能和复杂的解决方案,使自然语言处理领域发生了革命性的变化。这些模型经过广泛的文本数据集训练,在文本生成、翻译、摘要和问答等任务中表现出色。尽管LLM具有强大的功能,但它可能并不总是与特定的任务或领域保持一致。

什么是LLM微调?

微调LLM涉及对预先存在的模型进行额外的训练,该模型之前使用较小的特定领域数据集从广泛的数据集中获取了模式和特征。在“LLM微调”的上下文中,LLM表示“大型语言模型”,例如OpenAI的GPT系列。这种方法具有重要意义,因为从头开始训练大型语言模型在计算能力和时间方面都是高度资源密集型的。利用嵌入预训练模型中的现有知识允许在显著减少数据和计算需求的情况下实现特定任务的高性能。

以下是LLM微调中涉及的一些关键步骤:
  1. List item选择预训练模型:对于LLM微调,第一步是仔细选择符合我们所需架构和功能的基础预训练模型。预训练模型是在大量未标记数据的语料库上训练的通用模型。

  2. 收集相关数据集:然后我们需要收集与我们的任务相关的数据集。数据集应该以模型可以从中学习的方式进行标记或结构化。

  3. 预处理数据集:一旦数据集准备好,我们需要进行一些预处理以进行微调,方法是清理它,将其拆分为训练、验证和测试集,并确保它与我们想要微调的模型兼容。

  4. 微调:在选择了一个预训练的模型后,我们需要在预处理的相关数据集上对其进行微调,该数据集更适合手头的任务。我们将选择的数据集可能与特定的域或应用程序相关,从而允许模型针对该上下文进行调整和专门化。

  5. 特定任务的适应:在微调过程中,根据新的数据集调整模型的参数,帮助它更好地理解和生成与特定任务相关的内容。这个过程保留了在预训练期间获得的一般语言知识,同时根据目标领域的细微差别调整模型。

什么是LoRa?

LoRA是一种改进的微调方法,其中不是微调构成预训练的大型语言模型的权重矩阵的所有权重,而是微调近似于该较大矩阵的两个较小矩阵。这些矩阵构成了LoRA适配器。然后将这个经过微调的适配器加载到预先训练的模型中,并用于推理。

在针对特定任务或用例对LoRA进行微调后,结果是原始LLM不变,并且出现了相当小的“LoRA适配器”,通常表示原始LLM大小的个位数百分比(以MB而非GB为单位)。

在推理过程中,LoRA适配器必须与其原始LLM相结合。其优点在于许多LoRA适配器能够重用原始LLM,从而在处理多个任务和用例时降低总体内存需求。

什么是量化LoRA(QLoRA)?

QLoRA代表了LoRA的一种更具内存效率的迭代。QLoRA还通过将LoRA适配器(较小矩阵)的权重量化到较低精度(例如,4比特而不是8比特),使LoRA更进一步。这进一步减少了内存占用和存储需求。在QLoRA中,预训练的模型用量化的4位权重加载到GPU存储器中,而在LoRA中使用的是8位。尽管比特精度有所下降,QLoRA仍保持着与LoRA相当的有效性水平。

代码实现

依赖加载

from datasets import load_dataset
from transformers import (AutoModelForCausalLM,AutoTokenizer,BitsAndBytesConfig,HfArgumentParser,AutoTokenizer,TrainingArguments,Trainer,GenerationConfig
)
from tqdm import tqdm
from trl import SFTTrainer
import torch
import time
import pandas as pd
import numpy as np
from huggingface_hub import interpreter_login
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from functools import partialimport os
#禁用权重和偏差
os.environ['WANDB_DISABLED']="true"

数据加载

huggingface_dataset_name = "neil-code/dialogsum-test"#“neil代码/对话和测试
dataset = load_dataset(huggingface_dataset_name)
print(dataset['train'][0])

在这里插入图片描述
数据包含以下字段。
对话:对话的文本。
摘要:人类书写的对话摘要。
主题:人类书写的主题/对话的一行。
id:示例的唯一文件id。

加载模型

compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type='nf4',bnb_4bit_compute_dtype=compute_dtype,bnb_4bit_use_double_quant=False,)model_name=r'D:\临时模型\Meta-Llama-3-8B-Instruct'
device_map = {"": 0}
original_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device_map,quantization_config=bnb_config,trust_remote_code=True,use_auth_token=True)

BitsAndBytesConfig 为量化配置

  • List itemload_in_4bit=True:这个参数指定模型在加载时是否应该以4位量化的格式进行。这意味着模型的权重将使用4位精度来存储,从而减少模型的内存占用和加速推理过程。

  • bnb_4bit_quant_type='nf4':这个参数定义了用于量化的数值格式。在这里,‘nf4’ 代表 “Normal Float 4”,它是一种4位量化的浮点数格式,用于量化模型的权重。

  • bnb_4bit_compute_dtype=compute_dtype:这个参数指定了在推理时用于计算的数据类型。compute_dtype 是一个变量,应该在这段代码之前定义,它通常是一个类似于 torch.bfloat16 的数据类型,表示在计算期间使用的半精度浮点数格式。

  • bnb_4bit_use_double_quant=False:这个参数控制是否使用双量化技术。双量化是一种技术,它在量化过程中使用两个不同的量化表(lookup table)来提高精度。在这里,False 表示不使用双量化。

数据预处理

#prompt 工程
def create_prompt_formats(sample):"""格式化示例的各个字段('instruction','output')然后使用两个换行符将它们连接起来:参数sample:样本字典这里主要对数据添加一个prompt 用于给到大模型更好的格式规范,这里是模型效果提升的第一个关键点"""INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."INSTRUCTION_KEY = "### Instruct: Summarize the below conversation."RESPONSE_KEY = "### Output:"END_KEY = "### End"blurb = f"\n{INTRO_BLURB}"instruction = f"{INSTRUCTION_KEY}"input_context = f"{sample['dialogue']}" if sample["dialogue"] else Noneresponse = f"{RESPONSE_KEY}\n{sample['summary']}"end = f"{END_KEY}"parts = [part for part in [blurb, instruction, input_context, response, end] if part]formatted_prompt = "\n\n".join(parts)sample["text"] = formatted_promptreturn sample#数据截断
def get_max_length(model):conf = model.configmax_length = Nonefor length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:max_length = getattr(model.config, length_setting, None)if max_length:print(f"Found max lenth: {max_length}")breakif not max_length:max_length = 1024print(f"Using default max length: {max_length}")

这篇关于使用QLoRA在自定义数据集上finetuning 大模型 LLAMA3 的数据比对分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975454

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分