基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统

本文主要是介绍基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统

文章目录

  • 大模型相关目录
  • 需求介绍
  • 具体实现
  • 零一万物多模态接入测试


需求介绍

OCR甚至多模态大模型的图像文字识别,均存在一定的识别误差或提取结果格式不统一。
例如图像中文字为

MITSUBISHI ELECTRIC 三菱电机

但信息系统中只需要三菱作为关键字填入。

为解决该问题,应在具体应用场景下,外接规范信息。

具体实现

实际操作方案非常简单,如下提所示:
在这里插入图片描述
红框中内容即为外部接入信息,具体地可通过外设json等数据,通过程序读入对大模型prompt进行拼接进行实现。

这样,使大模型在文字提取的同时,利用大模型强大的语义对齐和理解能力对识别信息进行统一。

零一万物多模态接入测试

此处分享一个零一万物的使用案例,可自行根据案例修改prompt进行上述思路的实现。

import openai
from openai import OpenAIAPI_BASE = "https://api.lingyiwanwu.com/v1"
API_KEY = ""client = OpenAI(# defaults to os.environ.get("OPENAI_API_KEY")api_key=API_KEY,base_url=API_BASE
)prompt = '''
### 任务:请问从图片识别设备品牌,该品牌从预设品牌中选取
### 预设内容如下:'''input_text = '''
预设品牌【三菱、西门子、施耐德、五菱】
'''completion = client.chat.completions.create(model="yi-vl-plus",messages= [{"role": "user","content": [{"type": "image_url","image_url": {"url": "http://picture.gptkong.com/20240508/Value(HourOfDay,2)Value(MinuteOfHour,2)3eca9c4cd34019bac35849ccd85094.jpg"}},{"type": "text","text": prompt+input_text}]}]
)
print(completion.choices[0].message.content)

其中,需通过如下语句配置环境:

pip install openai

通过如下地址获取自己图片的url(不保障一直有效,这个随便找个能上传图像的web页面均可获取图片url):

https://www.bamuwu.com/sqrcode

通过零一万物官网注册账号获取自己的API KEY即可:

https://platform.lingyiwanwu.com

这篇关于基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971092

相关文章

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,