代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

本文主要是介绍代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 300.最长递增子序列
    • 思路
    • CPP代码
  • 674.最长连续递增序列
    • 思路
    • CPP代码
  • 718.最长重复子数组
    • 思路
    • CPP代码

300.最长递增子序列

力扣题目链接

文章讲解:300.最长递增子序列

视频链接:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列

可以删除或不删除某些元素,保证数组原有的顺序,然后求最长的递增子序列。

这是典型的子序列系列,也是卡哥安排的第一个动规子序列问题。

思路

  • dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

  • 递推公式

如果j < i ,并且有nums[j] < nums[i],其中,以nums[j]结尾的最长递增子序列长度为dp[j]。以nums[i]结尾的最长递增子序列长度为dp[i]

我们应该有dp[i]=dp[j] + 1,再者,我们会遍历每一个小于i的下标j(也就是说我们会固定i,去遍历j),所以,我们的递推公式是:

dp[i] = max(dp[i], dp[j] + 1)

  • dp数组的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  • 确定遍历顺序

老样子,从前到后遍历,至于j的遍历范围是~i-1,但是遍历方向都无所谓.

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

这里为什么要定义一个result呢,因为我们如果不保存结果的话,后面还得去遍历dp数组找最大,着实没必要

  • 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

CPP代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674.最长连续递增序列

力扣题目链接

文章讲解:674.最长连续递增序列

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列

状态:连续递增子序列和递增子序列区别在哪里?体现在代码中的话又在哪里呢?

来了,本题要求是连续序列,而不是原始序列派生的子序列

思路

  • 明确dp数组的含义

以下标i为结尾的最长连续递增子序列的长度为dp[i]

  • 确定递推公式

在300.最长递增子序列中,我们的dp[i]是由i面前的某个元素j来进行推导。

本题中我们求的是连续的递增子序列,所以我们没有必要去比较前面的所有元素了,在上一题中,我们可是遍历了0~i-1j

所以如果我们nums[i] > nums[i-1],我们就做对应的那个dp[i] + 1的操作,即:

dp[i]=dp[i-1]+1

  • dp数组的初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  • 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}
  • 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

CPP代码

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718.最长重复子数组

力扣题目链接

文章讲解:718.最长重复子数组

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组

本题要操作两个数组了,就是要求两个数组中最长的重复子数组长度。

这里的子数组呢其实就是连续子序列,强调的是连续

暴力解法:两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

思路

  • dp数组含义

dp[i][j] :以下标i - 1为结尾的num1,和以下标j - 1为结尾的num2,最长重复子数组长度为dp[i][j]

为什么要定义成i-1结尾和以j-1结尾呢?

其实是为了让后续代码尽可能简洁。后续的话会写如果定义成i结尾和j结尾的代码麻烦之处

  • 递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当nums[i - 1]nums2[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1

根据递推公式可以看出,遍历i 和 j 要从1开始!

if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
  • 初始化

为了使递推公式能够完成推导,dp[i][0] dp[0][j]初始化为0。

举个例子nums1[0]如果和nums2[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  • 遍历顺序

从小到大遍历即可,先遍历哪个也都是可以的,并且在遍历的过程中记录dp[i][j]的最大值

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}
  • 打印

拿nums1: [1,2,3,2,1],nums2: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

CPP代码

// 版本一
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};//滚动数组,遍历nums2的时候,要从后向前遍历,避免重复覆盖
// 版本二
class Solution {
public:int findLength(vector<int>& A, vector<int>& B) {vector<int> dp(vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = B.size(); j > 0; j--) {if (A[i - 1] == B[j - 1]) {dp[j] = dp[j - 1] + 1;} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作if (dp[j] > result) result = dp[j];}}return result;}
};

这篇关于代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957017

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo