代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组

本文主要是介绍代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 300.最长递增子序列
    • 思路
    • CPP代码
  • 674.最长连续递增序列
    • 思路
    • CPP代码
  • 718.最长重复子数组
    • 思路
    • CPP代码

300.最长递增子序列

力扣题目链接

文章讲解:300.最长递增子序列

视频链接:动态规划之子序列问题,元素不连续!| LeetCode:300.最长递增子序列

可以删除或不删除某些元素,保证数组原有的顺序,然后求最长的递增子序列。

这是典型的子序列系列,也是卡哥安排的第一个动规子序列问题。

思路

  • dp[i]的定义

dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

  • 递推公式

如果j < i ,并且有nums[j] < nums[i],其中,以nums[j]结尾的最长递增子序列长度为dp[j]。以nums[i]结尾的最长递增子序列长度为dp[i]

我们应该有dp[i]=dp[j] + 1,再者,我们会遍历每一个小于i的下标j(也就是说我们会固定i,去遍历j),所以,我们的递推公式是:

dp[i] = max(dp[i], dp[j] + 1)

  • dp数组的初始化

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

  • 确定遍历顺序

老样子,从前到后遍历,至于j的遍历范围是~i-1,但是遍历方向都无所谓.

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

这里为什么要定义一个result呢,因为我们如果不保存结果的话,后面还得去遍历dp数组找最大,着实没必要

  • 举例推导dp数组

输入:[0,1,0,3,2],dp数组的变化如下:

CPP代码

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674.最长连续递增序列

力扣题目链接

文章讲解:674.最长连续递增序列

视频讲解:动态规划之子序列问题,重点在于连续!| LeetCode:674.最长连续递增序列

状态:连续递增子序列和递增子序列区别在哪里?体现在代码中的话又在哪里呢?

来了,本题要求是连续序列,而不是原始序列派生的子序列

思路

  • 明确dp数组的含义

以下标i为结尾的最长连续递增子序列的长度为dp[i]

  • 确定递推公式

在300.最长递增子序列中,我们的dp[i]是由i面前的某个元素j来进行推导。

本题中我们求的是连续的递增子序列,所以我们没有必要去比较前面的所有元素了,在上一题中,我们可是遍历了0~i-1j

所以如果我们nums[i] > nums[i-1],我们就做对应的那个dp[i] + 1的操作,即:

dp[i]=dp[i-1]+1

  • dp数组的初始化

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  • 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}
  • 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

CPP代码

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718.最长重复子数组

力扣题目链接

文章讲解:718.最长重复子数组

视频讲解:动态规划之子序列问题,想清楚DP数组的定义 | LeetCode:718.最长重复子数组

本题要操作两个数组了,就是要求两个数组中最长的重复子数组长度。

这里的子数组呢其实就是连续子序列,强调的是连续

暴力解法:两层for循环确定两个数组起始位置,然后再来一个循环可以是for或者while,来从两个起始位置开始比较,取得重复子数组的长度。

思路

  • dp数组含义

dp[i][j] :以下标i - 1为结尾的num1,和以下标j - 1为结尾的num2,最长重复子数组长度为dp[i][j]

为什么要定义成i-1结尾和以j-1结尾呢?

其实是为了让后续代码尽可能简洁。后续的话会写如果定义成i结尾和j结尾的代码麻烦之处

  • 递推公式

根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当nums[i - 1]nums2[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1

根据递推公式可以看出,遍历i 和 j 要从1开始!

if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;
  • 初始化

为了使递推公式能够完成推导,dp[i][0] dp[0][j]初始化为0。

举个例子nums1[0]如果和nums2[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

  • 遍历顺序

从小到大遍历即可,先遍历哪个也都是可以的,并且在遍历的过程中记录dp[i][j]的最大值

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}
  • 打印

拿nums1: [1,2,3,2,1],nums2: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:

CPP代码

// 版本一
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};//滚动数组,遍历nums2的时候,要从后向前遍历,避免重复覆盖
// 版本二
class Solution {
public:int findLength(vector<int>& A, vector<int>& B) {vector<int> dp(vector<int>(B.size() + 1, 0));int result = 0;for (int i = 1; i <= A.size(); i++) {for (int j = B.size(); j > 0; j--) {if (A[i - 1] == B[j - 1]) {dp[j] = dp[j - 1] + 1;} else dp[j] = 0; // 注意这里不相等的时候要有赋0的操作if (dp[j] > result) result = dp[j];}}return result;}
};

这篇关于代码随想录算法训练营DAY50|C++动态规划Part11|300.最长递增子序列、674.最长连续递增序列、718.最长重复子数组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957017

相关文章

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造