代码随想录算法训练营DAY40\DAY41|C++动态规划Part.3|343.整数拆分、96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营DAY40\DAY41|C++动态规划Part.3|343.整数拆分、96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DAY40休息日,本篇为DAY41的内容

文章目录

  • 343.整数拆分
    • 思路
      • dp含义
      • 递推公式(难点)
      • 初始化
      • 遍历顺序
      • 打印
    • CPP代码
    • 数学方法
    • 归纳证明法
  • 96.不同的二叉搜索树
    • 思路
      • dp含义
      • 递推公式
      • 初始化
      • 遍历顺序
      • 打印
    • CPP代码
    • 题目总结

343.整数拆分

力扣题目链接

文章讲解:343.整数拆分

视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分

状态:哥们儿把从1-10的整数拆分全写出来了,思路嘎嘎有,要想乘积最大,必须把数字全部拆成2或者3。但是,如何跟动态规划联系起来呢?

看完题解出来了,哥们儿那个属于是数学方法,但是差很多完整的思考,后文会给予证明。

我认为本题更适合使用数学方法来解决,也就是数学归纳法

看到这个题目,会疑问应该拆成两个还是三个还是四个呢?

之前我们说过,动态规划用来解包含重叠子问题的某问题,那么这里直接试试动态规划。

思路

在之前你走过拆分2-10的流程吗,找到什么感觉了吗?当我们在拆10的时候,可能把10拆成4、6(或者是其他的什么),我们之前也拆过4和6,自然拆成2、2、3、3。发现了吗,我们拆10这个问题包含了重叠子问题(拆4和6),所以试试动态规划吧!

dp含义

自然一点的想法:

dp[i]:拆分数字i,可以得到的最大乘积为dp[i]

递推公式(难点)

递推公式的重难点是什么呢?先思考我们如何才能得到dp[i]

首先我们拆分i,肯定首先拆成两个数字,也就是j(i - j)j是遍历1j的所有情况;

如果拆成3个数及3个数以上,我们就是j * dp[i - j],该式子的含义就是把i拆成三个或三个以上数字(因为dp[i - j]包含了所有的拆分方法,且至少拆成两个)

NOTE

为什么公式j * dp[i-j]是成分成2个以上数字呢?

首先我们要搞明白dp[i - j]的含义,拆分数字i-j,可以得到的最大乘积,他就暗含了将i-j拆分成两个或两个以上数字。

为什么j就不拆分了呢?

由于我们是从1开始一直遍历到j,所以已经暗含了拆分j的情况,因为我们还有旁边的dp[i-j]来给j补蛋呢!

综上所述, d p [ i ] = m a x ( d p [ i ] , m a x ( ( i − j ) ∗ j , d p [ i − j ] ∗ j ) ) dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j)) dp[i]=max(dp[i],max((ij)j,dp[ij]j))

为什么这里多了个max(dp[i], ...)呢?因为我们之前说过,我们需要遍历1~j的数,所以为了保留每个i当前最大成绩,与新遍历的j上下文做比较,保持dp[i]的最大值更新或者不更新。

初始化

本题中,我们只初始化dp[2]=1,因为严格来说,dp[0] dp[1]不应该初始化,因为这在我们定义dp数组含义时就确定了这俩是没有意义的数值,题中给定的n也是大于等于2的。

遍历顺序

还记得上面我们说把1遍历到j不,这里我们需要两层遍历,对于dp数组那肯定是从左到右了;关于j应该是从1开始,因为从0开始仍然是没有意义的,难道我们还把一个数拆成0和其他数吗?

for (int i = 3; i <= n; i++) {for (int j = 1; j < i - 1; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}
//再优化一下子
for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

打印

CPP代码

class Solution {
public:int integerBreak(int n) {vector<int> dp(n + 1, 0);dp[2] = 1;for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}}return dp[n];}
};

数学方法

归纳证明法

我在写1-10的最优拆分方案过程中,确实感受到了以下规律,这里是leetcode的官解归纳证明法

  • 第一步:证明最优的拆分方案中不会出现大于 4的整数。

假设出现了大于 4 4 4 的整数 x x x,由于$ 2(x−2)>x 在 在 x>4$时成立,将 x拆分成 2和 x−2可以增大乘积。因此最优的拆分方案中不会出现大于 4 的整数。

  • 第二步:证明最优拆分方案中可以不出现整数4

很明显,出现4的话可以用 2 × 2 2 \times2 2×2代替

此时,可知最优的拆分方案只会出现1、2、3三个数字

  • 第三步:证明 n ≥ 5 n \geq5 n5时,最优的拆分方案不会出现整数1.

n ≥ 5 n \geq5 n5时,如果出现了整数1,那么拆分中剩余的数的和为 n − 1 ≥ 4 n-1 \geq4 n14,对应这至少两个整数1和一个大于等于4的数。我们将其中任意一个整数 x x x加上1,乘积都会增大。

此时,可知当 n ≥ 5 n \geq5 n5时,最优拆分方案只有2和3

  • 第三步:证明当 n ≥ 5 n \geq5 n5时,最优的拆分方案中2的个数不会超过3个

如果出现了超过 3 个 2,那么将它们转换成 2 个 3,可以增大乘积,即 3 × 3 > 2 × 2 × 2 3 \times 3 > 2 \times 2 \times 2 3×3>2×2×2

综上, n ≥ 5 n \geq5 n5的最优拆分方案就唯一了,这是因为当最优的拆分方案中2的个数分别为0,1,2个时,就对应着n除以3的余数分别为0,2,1的情况。

并且 n = 4 n = 4 n=4时的拆分方案也可以放入分类讨论的结果;当 2 ≤ n ≤ 3 2\leq n \leq3 2n3时,只有唯一的拆分方案 1 × ( n − 1 ) 1 \times (n - 1) 1×(n1)

int integerBreak(int n) {int (n <= 3) {return n - 1;}int quotient = n / 3; //商int remainder = n % 3; //余数if (remainder == 0) {	 //能被3整除,全部拆成3return (int)pow(3, quotient);}else if (remainder == 1){	//余1return (int)pow(3, quotient - 1) * 4}else {	//余2return (int)pow(3, quotient) * 2;}
}

96.不同的二叉搜索树

力扣题目链接

文章讲解:96.不同的二叉搜索树

视频讲解:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树

状态:这个动态规划我知道!有点明显。dp数组肯定是1维的,含义就是组成的不同BST的个数,关于递推公式我列举了n等于1-4时各能组成多少个BST,在写4时发现了大致的规律,但是没能力抽象成数学公式

思路

直观上,我们肯定是要把n=1、2、3直接拉出来比较的。

n=3时,

  • 当1为头结点,其右子树有两个结点,结点布局与n=2时一致
  • 当2为头结点,其左右子树都只有一个结点,布局和n=1一致
  • 当3位头结点,其左子树有两个节点,和n=2时一致

到这里我们就完全挖掘住了重叠的子问题。

dp[3] = 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]

有1个元素的搜索树数量就是dp[1]

有0个元素的搜索树数量就是dp[0]

综上 d p [ 3 ] = d p [ 2 ] ∗ d p [ 0 ] + d p [ 1 ] ∗ d p [ 1 ] + d p [ 0 ] ∗ d p [ 2 ] dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2] dp[3]=dp[2]dp[0]+dp[1]dp[1]+dp[0]dp[2].。

同理, d p [ 4 ] = d p [ 0 ] ∗ d p [ 3 ] + d p [ 1 ] ∗ d p [ 2 ] + d p [ 2 ] ∗ d p [ 1 ] + d p [ 3 ] ∗ d p [ 0 ] dp[4] = dp[0]*dp[3] + dp[1]*dp[2] + dp[2]*dp[1]+ dp[3]*dp[0] dp[4]=dp[0]dp[3]+dp[1]dp[2]+dp[2]dp[1]+dp[3]dp[0],其中 d p [ 3 ] dp[3] dp[3]可以继续拆分,很显然我们的递推公式应该写成:

d p [ i ] = ∑ j = 1 i d p [ j − 1 ] d p [ i − j ] dp[i] = \sum_{j=1}^{i}dp[j-1]dp[i-j] dp[i]=j=1idp[j1]dp[ij]j-1j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量。很明显需要两个循环,一个大循环i还有一个小循环j

dp含义

dp[i]:表示的是i个不同元素节点组成的二叉搜索树的个数为dp[i]

递推公式

上文分析中,已经给出了基本的递推公式

dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1j为头结点左子树节点数量i-j 为以j为头结点右子树节点数量

初始化

从递推公式也可以看出来,本题其实只要初始化dp[0]就可以了,他是推导的基础。

从定义上来讲,空结点也是一颗二叉树,也是一颗二叉搜索树。

综上:dp[0] = 1

遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

for (int i = 1; i <= n; i++){for (int j = 1; j <= i; i++) {dp[i] += dp[j - 1] * dp[i - j];}
}

打印

CPP代码

class Solution {
public:int numTrees(int n) {vector<int> dp(n + 1);dp[0] = 1;for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {dp[i] += dp[j - 1] * dp[i - j];}}return dp[n];}
};
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n ) O(n) O(n)

题目总结

本题我们用的是一种近似数学归纳法的推理。

在LeetCode官解中,给出了严格的数学证明,我认为这样的思考过程也是非常需要了解的。

  • LeetCode官解(必须手推一下!也不难!)

  • 卡塔兰数:

    • 卡塔兰数往往解决以下几类问题:
      • 有效的括号组合的数量。
      • 不同的二叉搜索树的数量。
      • 凸多边形划分成三角形的方法数量。
      • 在一个正方形格子图中从一角到另一角的路径数量,这些路径仅向上或向右移动,并且不越过对角线。
    • 递推公式 C 0 = 1 , C n + 1 = 2 ( 2 n + 1 ) n + 2 C n C_0=1, C_{n+1}=\frac{2(2n+1)}{n+2}C_n C0=1,Cn+1=n+22(2n+1)Cn
class Solution {
public:int numTrees(int n) {long long C = 1;for (int i = 0; i < n; ++i) {C = C * 2 * (2 * i + 1) / (i + 2);}return (int)C;}
};

这篇关于代码随想录算法训练营DAY40\DAY41|C++动态规划Part.3|343.整数拆分、96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944272

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明