BM25检索算法 python

2024-04-24 07:36
文章标签 python 算法 检索 bm25

本文主要是介绍BM25检索算法 python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.简介

BM25(Best Matching 25)是一种经典的信息检索算法,是基于 TF-IDF算法的改进版本,旨在解决、TF-IDF算法的一些不足之处。其被广泛应用于信息检索领域的排名函数,用于估计文档D与用户查询Q之间的相关性。它是一种基于概率检索框架的改进,特别是在处理长文档和短查询时表现出色。BM25的核心思想是基于词频(TF)和逆文档频率(IDF)来,同时还引入了文档的长度信息来计算文档D和查询Q之间的相关性。目前被广泛运用的搜索引擎ES就内置了BM25算法进行全文检索。

BM25算法的基本公式

在这里插入图片描述

  • Score(D,Q) 是文档 D 与查询 Q 的相关性得分。
  • qi 是查询中的第 i 个词。
  • f(qi, D)是词 qi 在文档 D 中的频率。
  • IDF(qi) 是词qi 的逆文档频率。
  • |D| 是文档 D的长度。
  • avgdl是所有文档的平均长度。
  • k1 和 b 是可调的参数,通常 k1 在1.2到2之间, b通常设为0.75。

IDF计算方法

在这里插入图片描述

  • N 是文档集合中的文档总数
  • n(q1)是包含词q1的文档数量

  • 词频 (f(qi, D)): 这是查询中的词 q_i在文档 D 中出现的频率。词频是衡量一个词在文档中重要性的基本指标。词频越高,这个词在文档中的重要性通常越大。
  • 逆文档频率 (IDF(qi)): 逆文档频率是衡量一个词对于整个文档集合的独特性或信息量的指标。它是由整个文档集合中包含该词的文档数量决定的。一个词在很多文档中出现,其IDF值就会低,反之则高。这意味着罕见的词通常有更高的IDF值,从而在相关性评分中拥有更大的权重。
  • 文档长度 (|D|): 这是文档D 中的词汇数量。文档长度用于调整词频的影响,因为较长的文档可能仅因为它们的长度就有更高的词频。
  • 平均文档长度 (avgdl): 这是整个文档集合中所有文档长度的平均值。它用于标准化不同文档的长度,以便可以公平比较不同长度的文档。
  • 可调参数 (k1 和 b):
    • k1 是一个正系数,用于控制词频的饱和度。较高的 k1 值意味着词频对评分的影响更大。
    • b 是用于控制文档长度对评分的影响的参数,取值在0到1之间。当 b=1 时,文档长度的影响最大;当b = 0 时,文档长度不影响评分。

2. 主要流程

1 数据预处理
  • 首先需要将文档进行数据预处理,包括分词、去除停用词、词干提取和标准化等步骤。
2 计算文档和查询条件中各个项的得分函数
  • 该步骤计算每个文档和查询条件中各个项的得分函数,并将其存储在倒排索引中。
3 计算文档与查询条件之间的匹配程度
  • 计算文档与查询条件之间的匹配程度得分。该步骤会计算所有匹配的文档的得分值,并按照得分值的大小对文档进行排序。
4 返回最匹配的文档
  • 返回最匹配的文档。

3. python 简单实现

import math
from collections import Counterclass BM25:def __init__(self, docs, k1=1.5, b=0.75):"""BM25算法的构造器:param docs: 分词后的文档列表,每个文档是一个包含词汇的列表:param k1: BM25算法中的调节参数k1:param b: BM25算法中的调节参数b"""self.docs = docsself.k1 = k1self.b = bself.doc_len = [len(doc) for doc in docs]  # 计算每个文档的长度self.avgdl = sum(self.doc_len) / len(docs)  # 计算所有文档的平均长度self.doc_freqs = []  # 存储每个文档的词频self.idf = {}  # 存储每个词的逆文档频率self.initialize()def initialize(self):"""初始化方法,计算所有词的逆文档频率"""df = {}  # 用于存储每个词在多少不同文档中出现for doc in self.docs:# 为每个文档创建一个词频统计self.doc_freqs.append(Counter(doc))# 更新df值for word in set(doc):df[word] = df.get(word, 0) + 1# 计算每个词的IDF值for word, freq in df.items():self.idf[word] = math.log((len(self.docs) - freq + 0.5) / (freq + 0.5) + 1)def score(self, doc, query):"""计算文档与查询的BM25得分:param doc: 文档的索引:param query: 查询词列表:return: 该文档与查询的相关性得分"""score = 0.0for word in query:if word in self.doc_freqs[doc]:freq = self.doc_freqs[doc][word]  # 词在文档中的频率# 应用BM25计算公式score += (self.idf[word] * freq * (self.k1 + 1)) / (freq + self.k1 * (1 - self.b + self.b * self.doc_len[doc] / self.avgdl))return score# 示例文档集和查询
docs = [["the", "quick", "brown", "fox"],["the", "lazy", "dog"],["the", "quick", "dog"],["the", "quick", "brown", "brown", "fox"]]
query = ["quick", "brown"]# 初始化BM25模型并计算得分
bm25 = BM25(docs)
scores = [bm25.score(i, query) for i in range(len(docs))]## query和文档的相关性得分:
## sores = [1.0192447810666774, 0.0, 0.3919504878447609, 1.2045355839511414]

在这个例子中,我们使用了四个文档和一个查询来计算相关性得分。查询是 [“quick”, “brown”]。得分如下:

  • 文档 1 (“the quick brown fox”): 得分约为 1.02
  • 文档 2 (“the lazy dog”): 得分为 0.0(因为它不包含查询中的任何单词)
  • 文档 3 (“the quick dog”): 得分约为 0.39
  • 文档 4 (“the quick brown brown fox”): 得分约为 1.20

这些得分反映了每个文档与查询之间的相关性。得分越高,表示文档与查询的相关性越强。在这个例子中,文档 4 与查询的相关性最高,其次是文档 1,文档 3 的相关性较低,而文档 2 与查询没有相关性。

4. 调用gensim实现

一般流程(对于中文)
  1. 构建corpus
    1.1 构建停用词词表(可加入部分高频词)
    1.2 分词
    1.3 去除停用词

2 训练BM25模型
3. 使用模型计算相似性

from gensim.summarization import bm25def test_gensim_bm25():corpus = [['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多'], ['第1', '个', '是', '应该', '第2', '个', '是'], ['不', '对', '应该', '就是', '差', '不', '多'], ['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']]bm25Model = bm25.BM25(corpus)test_strs = [['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁'],['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁', '问题', '第1', '个'],['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁', '问题', '第1', '个','来', '问', '几', '个', '问题'],['应该', '差', '不', '多', '一定', '要', '退', '60', '岁'],['差', '不', '多', '一定', '要', '退'],['一定', '要', '差', '不', '多', '退'],['一定', '要', '退'],['一定', '差', '不', '多'],]for test_str in test_strs:scores = bm25Model.get_scores(test_str)print('测试句子:', test_str)for i, j in zip(scores, corpus):print('分值:{},原句:{}'.format(i, j))print('\n')if __name__ == '__main__':test_gensim_bm25()

运行结果:

测试句子: ['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']
分值:0.2828807225045471,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0.226504790662966,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0.42164043562468434,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:2.2007072441488233,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']测试句子: ['应该', '差', '不', '多', '一定', '要', '退', '60', '岁']
分值:0.202827468444139,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0.09756782248085916,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0.42164043562468434,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:1.2213019690359779,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']测试句子: ['差', '不', '多', '一定', '要', '退']
分值:0.15212060133310423,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0.3240726131438252,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:1.1406697377282669,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']测试句子: ['一定', '要', '差', '不', '多', '退']
分值:0.15212060133310423,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0.3240726131438252,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:1.1406697377282669,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']测试句子: ['一定', '要', '退']
分值:0.0,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:0.898773043805134,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']测试句子: ['一定', '差', '不', '多']
分值:0.15212060133310423,原句:['来', '问', '几', '个', '问题', '第1', '个', '就', '是', '60', '岁', '60', '岁', '的', '时候', '退休', '是', '时间', '到', '了', '一定', '要', '退休', '还是', '觉得', '应该', '差', '不', '多']
分值:0,原句:['第1', '个', '是', '应该', '第2', '个', '是']
分值:0.3240726131438252,原句:['不', '对', '应该', '就是', '差', '不', '多']
分值:0.24189669392313295,原句:['所以', '是', '应该', '差', '不', '多', '还是', '一定', '要', '退', '60', '岁']

5. rank-bm25 (一个双线搜索引擎,用于查询一组文档并返回与查询最相关的文档)

安装

pip install rank_bm25
初始化

首先要做的是创建BM25类的一个实例,该实例读取文本语料库并对其进行一些索引:

from rank_bm25 import BM25Okapicorpus = ["Hello there good man!","It is quite windy in London","How is the weather today?"
]tokenized_corpus = [doc.split(" ") for doc in corpus]bm25 = BM25Okapi(tokenized_corpus)
# <rank_bm25.BM25Okapi at 0x1047881d0>

此包不进行任何文本预处理。如果你想做一些事情,比如降低词尾、删除词尾、词干等,你需要自己做。唯一的要求是类接收字符串列表,这些字符串是文档标记。

文档排名

我们已经创建了文档索引,我们可以向它提供查询,并查看哪些文档最相关:

query = "windy London"
tokenized_query = query.split(" ")doc_scores = bm25.get_scores(tokenized_query)
# array([0.        , 0.93729472, 0.        ])

除了获取文档分数,你也可以用来检索最佳文档:

bm25.get_top_n(tokenized_query, corpus, n=1)
# ['It is quite windy in London']

参考

心法利器[13] | 任务方案思考:句子相似度和匹配
ChatGLM 金融大模型决赛方案总结
rank-bm25 0.2.2
python根据BM25实现文本检索
相关性算法BM25的python实现
python借助elasticsearch实现精准查询与bm25查询
python实现内容检索子系统(BM25算法)
BM25,超全解释
史上最小白之BM25详解与实现
RAG提效利器——BM25检索算法原理和Python实现

这篇关于BM25检索算法 python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/931126

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一