Python实现高效地读写大型文件

2025-01-22 16:50

本文主要是介绍Python实现高效地读写大型文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下...

上一篇给大家介绍如何使用 python 进行文件读写操作的方法,问题来了,如何读写的是大型文件,有没有什么方法来提高效率呢,不要捉急,这一篇来聊聊如何在Python中高效地读写大型文件。

以下是在 Python 中高效读写大型文件的一些方法:

一、逐行读取大型文件

def read_large_file_line_by_line(file_path):
    with open(file_path, 'r') as file:
        for line in file:
            # 处理每一行的数据,这里仅打印
            print(line.strip())
  • with open(file_path, 'r') as file:使用 with 语句打开文件,确保文件在使用完毕后自动关闭。
  • for line in file:文件对象是可迭代的,逐行读取文件内容,避免一次性将整个文件读入内存,节省内存空间,适用于大型文本文件。

二、分块读取大型文件

def read_large_file_in_chunks(file_path, chunk_size=1024):
    with open(file_path, 'r') as file:
        while True:
            data = file.read(chunk_size)
            if not data:
                break
            # 处理读取到的数据块,这里仅打印
            print(data)
  • file.read(chunk_size):每次读取指定大小(chunk编程_size)的数据块,循环读取直到文件结束。
  • chunk_size 可以根据实际情况调整,一般根据文件大小和可用内存来选择合适的值。

三、使用 mmap 模块进行内存映射文件操作(适用于大文件)

import mmap

def read_large_file_with_mmap(file_path):
    with openandroid(file_path, 'r') as file:
        wihttp://www.chinasem.cnth mmap.mmap(file.fileno(), 0, Access=mmap.ACCESS_READ) as javascriptmmap_obj:
            # 处理映射的数据,这里仅打印
            print(mmap_obj.readline())
  • mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ):将文件映射到内存中,实现文件的高效读写,fileno() 方法获取文件描述符。
  • 可以像操作字符串一样操作 mmap_obj,避免了频繁的文件 I/O 操作,提高性能。

四、使用 pandas 分块处理大型 CSV 文件(适用于 CSV 文件)

import pandas as pd

def read_large_csv_in_chunks(csv_file_path):
    chunk_size = 100000  # 每块的行数
    for chunk in pd.read_csv(csv_file_path, chunksize=chunk_size):
        # 处理数据块,这里仅打印
        print(chunk)
  • pd.read_csv(csv_file_path, chunksize=chunk_size):将 CSV 文件按块读取,chunksize 为每块的行数。
  • 可以对每个 chunk 进行数据处理,如数据清洗、分析等操作,避免一次性加载整个文件。

五、使用 numpy 分块处理大型二进制文件(适用于二进制文件)

import numpy as np

def read_large_binary_in_chunks(binary_file_path, chunk_size=1024):
    with open(binary_file_path, 'rb') as file:
        while True:
            data = np.fromfile(file, dtype=np.float32, count=chunk_size)
            if data.size == 0:
                break
            # 处理数据块,这里仅打印
            print(data)
  • np.fromfile(file, dtype=np.float32, count=chunk_size):从文件中读取二进制数据,dtype 为数据类型,count 为元素数量。
  • 可以根据文件的存储数据类型调整 dtype,按块读取二进制文件。

六、使用 itertools 模块进行迭代处理(适用于文本文件)

import itertools

def read_large_file_with_itertools(file_path, chunk_size=1024):
    with open(file_path, 'r') as file:
        for chunk in itertools.zip_longest(*[iter(file)]*chunk_size):
            chunk = [line.strip() for line in chunk if line]
            # 处理数据块,这里仅打印
            print(chunk)

itertools.zip_longest(*[iter(file)]*chunk_size):将文件迭代器分组,每组 chunk_size 行,方便分块处理。

七、使用 linecache 模块逐行读取大型文件(适用于文本文件)

import linecache

def read_large_file_with_linecache(file_path, line_number):
    line = linecache.getline(file_path, line_number)
    # 处理指定行的数据,这里仅打印
    print(line.strip())

linecache.getline(file_path, line_number):从文件中获取指定行的数据,适用于只需要读取文件中某些行的情况,避免读取整个文件。

总结

在处理大型文件时,根据文件类型和操作需求,可灵活使用上述方法,避免一次性将整个文件加载到内存中,从而提高程序的性能和稳定性。同时,可以结合不同的模块和函数,实现复杂的数据处理和分析任务。好了,赶快收藏起来吧,实际工作中你一定会用得到。

到此这篇关于Python实现高效地读写大型文件的文章就介绍到这了,更多相关Python读写大型文件内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python实现高效地读写大型文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153187

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详