Python将大量遥感数据的值缩放指定倍数的方法(推荐)

2025-01-25 04:50

本文主要是介绍Python将大量遥感数据的值缩放指定倍数的方法(推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像...

本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像文件的方法。

  首先,看一下本文的具体需求。我们现有一个文件夹,其中含有大量.tif格式的遥感影像文件;其中,这些遥感影像文件均含有4个波段,每1个波段都表示其各自的反射率数值。而对于这些遥感影像文件,有的文件其各波段数值已经处于01的区间内(也就是反射率数据的正常数值js区间),而有的文件其各波段数值则是还没有乘上缩放系数的(在本文中,缩放系数是0.0001)。

  例如,如下图所示,即为文件夹中某一景遥感影像。可以看到其各波段数值都是大于1的,这是因为其数值都是还没有乘上缩放系数的,即是真实的反射率数值10000倍。

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

  我们希望实现的是,对于这些遥感影像中,还没有乘上缩放系数0.0001的遥感影像,将其像元值乘上这个缩放系数;而对于已经缩放过(也就是像元数值已经落在01区间内)的遥感影像,则不加以任何处理。最后,将经过上述操作后的所有图像(无论是否执行缩放)均保存至指定的输出结果文件夹中。

  本文所需代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 18 12:37:22 2024
@author: fkxxgis
"""
import os
from osgeo import gdal
original_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Original"
output_folder = r"E:\04_Reconstruction\99_MODIS\new_data\GF_Rec"
for filename in os.listdir(original_folder):
    if filename.endswith('.tif'):
        dataset = gdal.Open(os.path.join(original_folder, filename), gdal.GA_ReadOnly)
        width = dataset.RasterXSize
        height = dataset.RasterYSize
        band_count = dataset.RasterCount
        driver = gdal.GetDriverByName('GTiff')
        output_dataset = driver.Create(os.path.join(output_folder, "New_" + filename), width, height, band_count, gdal.GDT_FloChina编程at32)
        for band_index in range(1, band_count + 1):
            banphpd = dataset.GetRasterBand(band_index)
            data = band.ReadAsArray()
            if band_index == 1:
                data = data.astype(float)
                data[data > 1] /= 10000
            elif band_index == 2:
                data = dChina编程ata.astype(float)
                data[data > 1] /= 10000
            elif band_index == 3:
                data = data.astype(float)
                data[data > 1] /= 10000
            elif band_index == 4:
 android               data = data.astype(float)
                data[data > 1] /= 10000
            output_band = output_dataset.GetRasterBand(band_index)
            output_band.WriteArray(data)
            output_band.FlushCache()
        output_dataset.SetGeoTransform(dataset.GetGeoTransform())
        output_dataset.SetProjection(dataset.GetProjection())
        dataset = None
        output_dataset = None

  首先,我们使用os.listdir()函数遍历原始数据文件夹中的所有文件,并使用if语句筛选出以.tif结尾的文件;随后,使用gdal.Open()函数打开原始影像数据集,并指定只读模式;接下来,使用dataset.RasterXSizedataset.RasterYSize获取影像数据集的宽度和高度。

  随后,使用dataset.RasterCount获取波段数量,并使用gdal.GetDriverByName()创建输出数据集的驱动程序对象;紧接着,通过Create()方法创建输出数据集,并指定输出文件的路径、宽度、高度、波段数量和数据类型(gdal.GDT_Float32表示浮点型)。

  接下来,就可以开始使用循环,对每个文件每个波段进行处理。首先,使用dataset.GetRasterBand()方法获取当前波段对象,然后使用band.ReadAsArray()将波段数据读取为数组;根据波段索引的不同,对波段数据进行处理。在本文中,对4个波段进行的其实是相同的处理,即将大于1的像素值除以10000

  其次,使用output_dataset.GetRasterBand()方法获取输出数据集中的当前波段对象,并使用output_band.WriteArray()方法将处理后的数据写入输出数据集。

  再次,使用dataset.GetGeoTransform()dataset.GetProjection()分别获取原始数据集的地理转换和投影信息,并使用output_dataset.SetGeoTransform()output_dataset.SetProjection()设置输出数据集的地理转换和投影信息。

  最后一步,关闭数据集对象。至此,代码就完成了对每个.tif文件的处理,并将处理后的数据保存到输出文件夹中。

  此时,打开本文开头展示的那1景遥感影像,可以看到其像素数值已经是乘上缩放系数之后的了,也就是落在了01的区间内;如下图所示。

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

到此这篇关于Python代码将大量遥感数据的值缩放指定倍数的方法的文章就介绍到这了,更多相关Python遥感数据的值缩放指定倍数内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python将大量遥感数据的值缩放指定倍数的方法(推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153221

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a