分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。

本文主要是介绍分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下是一个使用高斯消元法和列主元消去法求解线性方程组的示例:

假设我们要解决以下线性方程组:

4x + 2y + z = 8 -2x + y - 3z = -11 3x - 2y + 4z = 10

首先,我们可以将该线性方程组表示为增广矩阵的形式:

[4 2 1 | 8] [-2 1 -3 | -11] [3 -2 4 | 10]

使用高斯消元法,我们可以进行以下操作:

  1. 将第一个方程除以4,得到1x + 0.5y + 0.25z = 2;
  2. 将第一个方程的2倍加到第二个方程上,得到0x + 2y - 2.5z = -3;
  3. 将第一个方程的3倍减去第三个方程,得到0x + 0y + 2.25z = 4;
  4. 将第二个方程的1/2倍加到第三个方程,得到0x + 0y + 2.25z = 4。

现在,我们得到了一个上三角形矩阵,可以通过回代法求解。我们可以从最后一行开始, 得到z = 4 / 2.25 = 1.7778。 然后,通过第二个方程,我们可以得到y = (-3 + 2.5z) / 2 = 0.4444。 最后,通过第一个方程,我们可以得到x = (2 - 0.5y - 0.25z) / 1 = 1.5556。 因此,解为x = 1.5556,y = 0.4444,z = 1.7778。

接下来,我们使用列主元消去法来解决相同的线性方程组。列主元消去法与高斯消元法的主要区别在于选择主元的方式。 在列主元消去法中,我们会在每一列中选择绝对值最大的元素作为主元,以避免除以零的情况。

首先,我们还是将线性方程组表示为增广矩阵的形式:

[4 2 1 | 8] [-2 1 -3 | -11] [3 -2 4 | 10]

然后,我们会选择第一列中绝对值最大的元素,并将其作为主元。在第一行和第三行中,4的绝对值最大,因此我们将第一行与第三行交换。

[3 -2 4 | 10] [-2 1 -3 | -11] [4 2 1 | 8]

现在,我们可以进行列主元消去法的操作:

  1. 将第一个方程除以3,得到1x - (2/3)y + (4/3)z = 10/3;
  2. 将第一个方程的2倍加到第二个方程上,得到0x + (1/3)y - (10/3)z = -29/3;
  3. 将第一个方程的4倍减去第三个方程,得到0x + (10/3)y - (14/3)z = -2/3;
  4. 将第二个方程的3倍减去第三个方程,得到0x + 0y + 6z = -3。

现在,我们得到了一个上三角形矩阵,可以通过回代法求解。我们可以从最后一行开始, 得到z = -3 / 6 = -0.5。 然后,通过第二个方程,我们可以得到y = (-29/3 + (10/3)z) / (1/3) = -3。 最后,通过第一个方程,我们可以得到x = (10/3 - (2/3)y - (4/3)z) / 1 = 1。 因此,解为x = 1,y = -3,z = -0.5。

下面是一个比较高斯消元法和列主元消去法结果与精度的表格:

方程组的解高斯消元法列主元消去法
x1.55561
y0.4444-3
z1.7778-0.5

从上表可以看出,高斯消元法和列主元消去法得到的解略有不同。这是由于高斯消元法在选择主元时可能选择了较小的元素,从而导致了舍入误差的累积。而列主元消去法通过选择绝对值最大的元素作为主元,减少了这种累积误差。

分析实验中出现的问题:

  1. 高斯消元法可能出现除以零的情况,如在第一个方程中除以了4。这是因为高斯消元法不对主元进行选择,可能导致主元为零。解决方法是在选择主元之前,通过交换行或列,确保主元不为零。
  2. 高斯消元法在计算过程中可能会产生大量的舍入误差。这是由于浮点数的有限精度表示。解决方法是在计算过程中尽量避免大幅度的数值变化,比如除以较大的数或相减较大的数,可以通过缩放矩阵或增加精度来减少舍入误差。
  3. 列主元消去法可以避免除以零的情况,但可能会选择一个相对较小的元素作为主元,从而导致舍入误差的累积。解决方法是在选择主元时,可以通过交换行或列,选择绝对值最大的元素作为主元,从而减少误差的累积。

综上所述,高斯消元法和列主元消去法是两种常用的求解线性方程组的方法。尽管高斯消元法较为简单,但在某些情况下可能出现除以零的情况和舍入误差的累积。列主元消去法通过选择绝对值最大的元素作为主元,可以避免除以零的情况和减少舍入误差的累积。因此,在实际使用中,可以根据具体情况选择适合的方法来求解线性方程组。

这篇关于分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927089

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决