一举颠覆Transformer!最新Mamba结合方案刷新多个SOTA,单张GPU即可处理140k

本文主要是介绍一举颠覆Transformer!最新Mamba结合方案刷新多个SOTA,单张GPU即可处理140k,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

还记得前段时间爆火的Jamba吗?

Jamba是世界上第一个生产级的Mamba大模型,它将基于结构化状态空间模型 (SSM) 的 Mamba 模型与 transformer 架构相结合,取两种架构之长,达到模型质量和效率兼得的效果。

在吞吐量和效率等关键衡量指标上,Jamba处理128k长上下文时吞吐量是 Mixtral 8x7B的3倍;在成本上,Jamba一共支持256k上下文,单张A100 GPU即可处理140k。

这种十分炸裂的效果得益于其作者对Mamba和Transformer两种架构的创新性结合。受此启发,为了让Mamba也可以在其他方面达到两全其美的效果,研究者们开始探索Mamba与其他技术的结合,以期解决单一模型或方法难以克服的挑战。

目前已出现不少非常值得学习的研究成果,我从中挑选了12种Mamba结合方案,都是2024最新,可借鉴的方法和创新点我做了简单介绍,已开源的代码也都整理了,方便同学们学习。

论文原文以及开源代码需要的同学看文末

结合MoE

MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts

方法:本文提出了将SSM与Mamba相结合的研究方向,以便将SSM的潜力扩展到更大规模,并与现有的最先进的语言模型竞争。 MoE-Mamba通过Mamba与Mixture of Experts层的结合,实现了SSM和MoE的效率提升,并在2.35倍的训练步骤中达到了与Mamba相同的性能。

创新点:

  • 将Mixture of Experts与State Space Models相结合,开辟了一个新的研究方向。这条道路将使得更大规模的语言模型更有效地扩展。

  • 作者发现了两种表现相似但基于不同架构的模型之间奇怪的度量不一致情况。作者假设这一差异可能暗示了Mamba和其他SSM的潜在失效模式。

结合多模态

Fusion-Mamba for Cross-modality Object Detection

方法:本文提出了一种名为Fusion-Mamba的方法,旨在在隐藏状态空间中融合特征,这可能为跨模态特征融合开辟了一种新的范例。受到Mamba的启发,作者采用具有线性复杂度的Mamba构建了隐藏状态空间,并通过门控机制进一步改进,实现更深入和复杂的融合。

创新点:

  • Fusion-Mamba方法:作者引入了一种名为Fusion-Mamba的新方法,该方法首次利用Mamba进行多模态特征融合。在Fusion-Mamba中,作者设计了两个模块:State Space Channel Swapping (SSCS)模块用于浅层特征融合,Dual State Space Fusion (DSSF)模块用于在隐藏状态空间中进行深层特征融合。

  • 2D选择性扫描(SS2D)机制:作者引入了一种名为2D选择性扫描机制,用于解决二维视觉数据和一维语言序列之间的不兼容性。SS2D机制通过将图像补丁沿四个不同方向进行扩展,生成四个独立的序列,并利用这些序列建立全局感受野。

结合SAR

Simba:Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos

方法:论文提出了一种新的Skeleton Action Recognition (SAR)框架,将选择性状态空间模型Mamba与图数据相结合。通过在具有Shift-GCN骨干的新型编码器-解码器架构中利用Mamba,作者解决了SAR任务中有效建模长序列的挑战。与缺乏结构先验并且性能低于GCN方法的纯Transformer不同,该方法利用Mamba的力量来增强时间建模,同时保留空间信息。

创新点:

  • 首次将选择性状态空间模型Mamba集成到骨骼动作识别(SAR)和图数据领域中。通过在新颖的编码器-解码器架构中与Shift-GCN骨干网络结合使用Mamba,解决了SAR任务中有效建模长序列的挑战。

  • 模型Simba在三个基准SAR数据集(NTU RGB+D、NTU RGB+D120和Northwestern-UCLA)上取得了最先进的性能。

结合PM扩散

P-Mamba: Marrying Perona Malik Diffusion with Mamba for Efficient Pediatric Echocardiographic Left Ventricular Segmentation

方法:论文提出一种名为P-Mamba的模型,用于高效的儿科心脏超声检查左心室分割,该模型通过使用DWT-based PMD分支和Vision Mamba分支相结合的方法,在准确性和效率方面优于现有模型。

创新点:

  • P-Mamba模型:在儿科心脏超声图像中,引入了一种名为P-Mamba的创新架构,用于儿科心脏左心室的分割。该模型采用了Vision Mamba层来提高计算和内存效率,并能够捕捉全局依赖关系。同时,在基于DWT的PMD编码器分支中,引入了基于DWT的Perona-Malik扩散(PMD)块来抑制噪声,同时保留左心室的局部形态特征。

  • 数据集:该研究使用了从Lucile Packard Children's Hospital Stanford(2014-2021)收集的1,958名儿科患者的4,467个心脏超声图像数据集,其中包括7,643个灰度2D视频剪辑和17,600个标记图像。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“Mamba结合”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于一举颠覆Transformer!最新Mamba结合方案刷新多个SOTA,单张GPU即可处理140k的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/926735

相关文章

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

在 Windows 上安装 DeepSeek 的完整指南(最新推荐)

《在Windows上安装DeepSeek的完整指南(最新推荐)》在Windows上安装DeepSeek的完整指南,包括下载和安装Ollama、下载DeepSeekRXNUMX模型、运行Deep... 目录在www.chinasem.cn Windows 上安装 DeepSeek 的完整指南步骤 1:下载并安装