利用动态规划优化10年投资回报:策略、证明与算法分析

2024-04-18 07:36

本文主要是介绍利用动态规划优化10年投资回报:策略、证明与算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用动态规划优化10年投资回报:策略、证明与算法分析

  • a. 存在最优投资策略的证明
  • b. 最优子结构性质的证明
  • c. 最优投资策略规划算法设计
  • d. 新限制条款下最优子结构性质的证明

在面对投资策略规划问题时,我们的目标是在10年后获得最大的回报。Amalgamated投资公司提供了多种投资选择,每种投资在不同年份有不同的回报率。我们需要制定一个最优的投资策略,以确保在满足投资规则的前提下,最大化我们的收益。以下是对问题的分析和解决方案的详细描述。
在这里插入图片描述

a. 存在最优投资策略的证明

证明

我们可以通过反证法来证明每年将所有资金投入到单一投资中是最优的策略。假设存在一个投资策略,它在某些年份将资金分散投资于多种投资项目中,并且这个策略在10年后的回报高于只投资单一项目的策略。我们可以通过以下步骤来分析这个假设:

  1. 考虑第10年结束时的总回报。由于回报率是已知的,我们可以比较不同投资组合的预期回报。
  2. 如果在第10年,我们将资金分散投资于多个项目,我们可以计算出每种投资的预期回报,并找到回报率最高的那个。
  3. 现在,假设我们在第10年只投资于这个回报率最高的项目。由于我们的目标是最大化10年的总回报,我们可以将这个最高回报作为基准。
  4. 接下来,我们考虑第9年的投资决策。如果第9年的投资分散于多个项目,我们可以重新分配资金,使得在第10年结束时的总回报等于或高于原假设的策略。
  5. 重复这个过程,我们可以为每一年找到一个最优的投资项目,使得10年后的总回报最大化。

由于我们每年都只投资于单一项目,且每年都选择回报率最高的项目,我们可以得出结论:存在最优投资策略,每年将所有资金投入到单一投资中。

b. 最优子结构性质的证明

证明

最优子结构性质意味着一个问题的最优解包含其子问题的最优解。对于我们的投资策略问题,我们可以将其分解为每年的投资决策。如果我们可以证明对于每一年的投资决策,最优解都是基于前一年的最优解,那么我们就证明了问题具有最优子结构性质。

  1. 假设我们在第i年有一个最优投资策略,它基于前i-1年的最优解。
  2. 在第i+1年,我们可以基于第i年的最优解来做出投资决策。这是因为第i+1年的总回报取决于第i年的回报和第i+1年的回报。
  3. 由于我们的目标是最大化10年的总回报,我们可以将每年的最优决策串联起来,形成一个10年的最优投资策略。

因此,我们可以得出结论,投资策略规划问题具有最优子结构性质。

c. 最优投资策略规划算法设计

我们可以使用动态规划来设计一个最优投资策略规划算法。以下是算法的伪代码:

ALGORITHM OptimalInvestmentStrategyInput: n - 投资种类的数量, r[1..n, 1..10] - 未来10年每种投资的回报率, f1, f2 - 转移费用Output: max_return - 10年后的最大回报// 初始化动态规划表let dp[1..n, 1..10] be a new table// 基本情况:第0年没有投资,回报为0for i = 1 to ndp[i, 0] = 0// 递归填表for year = 1 to 10for i = 1 to n// 不转移投资,直接获得回报dp[i, year] = dp[i, year - 1] * (1 + r[i][year - 1])// 考虑所有可能的转移,找到最优解for j = 1 to nif j != idp[i, year] = max(dp[i, year], dp[j, year - 1] * (1 + r[i][year - 1]) - (if not transfer then f1 else f2))// 最大回报是所有投资种类的最大值max_return = max(dp[i, 10] for i = 1 to n)return max_return

算法的时间复杂度是O(n^2 * 10),因为我们需要对每种投资和每一年进行考虑。

d. 新限制条款下最优子结构性质的证明

现在,Amalgamated投资公司加入了新的限制条款,即在任何时刻不能在任何单一投资种类中投入超过15000美元。我们需要证明这个新规则下,最大化10年回报问题不再具有最优子结构性质。

证明

  1. 由于现在存在投资上限,我们在做出投资决策时需要考虑这个限制。这意味着一个年份的最优决策可能依赖于之前的多个年份的投资决策,因为我们需要避免超过投资上限。
  2. 考虑一个情况,其中前9年的投资决策都是最优的,但在第10年,由于投资上限的限制,我们无法简单地将资金转移到回报率最高的项目中。
  3. 我们需要重新考虑前9年的投资策略,以确保在第10年不会超过投资上限。这表明子问题的最优解不再足以构建原问题的最优解。

因此,我们可以得出结论,在新限制条款下,最大化10年回报问题不再具有最优子结构性质。这意味着我们需要重新设计算法来处理这个问题,可能需要采用更复杂的方法,如分支定界或整数规划。

这篇关于利用动态规划优化10年投资回报:策略、证明与算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914147

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig