一篇文章看懂Homogeneous Graph与Heterogeneous Graph,以及如何通过DGL定义数据与模型 进行Batch训练

本文主要是介绍一篇文章看懂Homogeneous Graph与Heterogeneous Graph,以及如何通过DGL定义数据与模型 进行Batch训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Homogeneous Graph与Heterogeneous Graph

    • 提供图训练的小知识
    • Homogeneous Graph与Heterogeneous Graph的区别
    • 在DGL(Deep Graph Library) 定义 同构图
    • 在DGL(Deep Graph Library) 定义 异构图

提供图训练的小知识

在一张图进行训练时, 可能由于层数的增加,使得结点可以充分汇聚到其他结点的信息。
layer0: 直接连接的信息被汇聚。
layer1: 间接连接的结点被汇聚。
layer2: …
在这里插入图片描述

Homogeneous Graph与Heterogeneous Graph的区别

  1. Homogeneous Graph(同构图)

同构图是指所有节点和边都是同质的,即节点之间的连接方式相同,边的类型相同。在同构图中,所有节点和边都属于同一种类型。例如,社交网络中的好友关系图就是一个同构图,其中所有节点都代表用户,边代表用户之间的好友关系。
在 DGL 中,使用 dgl.graph() 函数可以创建同构图。同构图的创建可以直接从节点和边的张量数据中构建,所有的节点和边都具有相同的类型。

  1. Heterogeneous Graph(异构图)

异构图是指节点和边可以有不同的类型,节点之间的连接方式和边的类型可以不同。在异构图中,节点和边可以代表不同的实体或关系,具有多样性。例如,电子商务网站中的商品-用户-类别三元关系图就是一个异构图,其中节点分为商品、用户和类别三种类型,边代表商品与用户之间的购买关系以及商品与类别之间的归属关系。
在 DGL 中,使用 dgl.heterograph() 函数可以创建异构图。异构图的创建需要指定不同类型的节点和边,以及它们之间的连接关系。

在DGL(Deep Graph Library) 定义 同构图

  1. 初始化图数据

初始化数据

import dgl
import torch# 初始化图列表
graph_list = []# 构建每组对话的图
for _ in range(batchsize):# 假设每组对话有5个句子num_sentences = 5sentence_features = torch.randn(num_sentences, 768)  # 句子级特征# 添加句子级节点g.add_nodes(num_sentences, {'sentence_feat': sentence_features})g.add_edges([xxxx], [xxxx])  # 添加结点 ([起始结点],[终端结点])# 将图添加到图列表中graph_list.append(g)# 批次化图
batched_graph = dgl.batch(graph_list)
  1. 定义同构图GCN
import dgl
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader# 定义一个简单的GCN模型
class GCN(nn.Module):def __init__(self, in_feats, hidden_size, out_feats):super(GCN, self).__init__()self.conv1 = dgl.nn.GraphConv(in_feats, hidden_size)self.conv2 = dgl.nn.GraphConv(hidden_size, out_feats)def forward(self, g, features):x = torch.relu(self.conv1(g, features))x = self.conv2(g, x)return x

在DGL(Deep Graph Library) 定义 异构图

  1. 初始化图数据

初始化数据

import dgl
import torch# 初始化一个空的异构图列表
hetero_graph_list = []# 遍历每组对话数据,构建异构图
for _ in range(batchsize):# 初始化一个异构图对象 ([xxx], [xxx] 表示 起始结点)g = dgl.heterograph({('结点类型1', '关系', '结点类型2'): ([xxx], [xxx]),('结点类型1', '关系', '结点类型3'): ([xxx], [xxx]),('结点类型2', '关系', '结点类型3'): ([xxx], [xxx]),})# 添加节点特征g.nodes['结点类型1'].data['feat'] = 结点类型1特征g.nodes['结点类型2'].data['feat'] = 结点类型2特征g.nodes['结点类型3'].data['feat'] = 结点类型3特征# 将图对象添加到异构图列表中hetero_graph_list.append(g)# 使用 dgl.batch_hetero() 函数将异构图列表批次化
batched_hetero_graph = dgl.batch_hetero(hetero_graph_list)
  1. 定义异构图网络结构
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as Fclass HeteroGCN(nn.Module):def __init__(self, in_feats, hidden_feats, out_feats):super(HeteroGCN, self).__init__()# 定义每种节点类型的图卷积层self.conv1 = dgl.nn.HeteroGraphConv({'结点类型1': dgl.nn.GraphConv(in_feats['结点类型1'], hidden_feats),'结点类型2': dgl.nn.GraphConv(in_feats['结点类型2'], hidden_feats),'结点类型3': dgl.nn.GraphConv(in_feats['结点类型3'], hidden_feats)})self.conv2 = dgl.nn.HeteroGraphConv({'结点类型1': dgl.nn.GraphConv(hidden_feats, out_feats),'结点类型2': dgl.nn.GraphConv(hidden_feats, out_feats),'结点类型3': dgl.nn.GraphConv(hidden_feats, out_feats)})def forward(self, g, node_features):# 执行第一层异构图卷积h = self.conv1(g, node_features)# 应用激活函数h = {k: F.relu(h[k]) for k in h.keys()}# 执行第二层异构图卷积h = self.conv2(g, h)return h

这篇关于一篇文章看懂Homogeneous Graph与Heterogeneous Graph,以及如何通过DGL定义数据与模型 进行Batch训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903792

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(