谁来治好AI的「幻觉」?面对众多对抗样本攻击,深度神经网络该何去何从

本文主要是介绍谁来治好AI的「幻觉」?面对众多对抗样本攻击,深度神经网络该何去何从,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选自Wired

作者:Tom Simonite

机器之心编译

参与:路雪、黄小天


2 月 3 日,来自 MIT、UC Berkeley 的 Athalye 等人宣布其研究攻破了 ICLR 2018 大会的接收论文中的 7 篇有关防御对抗样本的研究。之前,轻微扰动导致停车标志被无视、把熊猫认成长臂猿、把校车认成鸵鸟等等各种案例层出不穷。那么关于 AI 容易被「幻觉」干扰的现象,研究者又有什么看法?深度神经网络该何去何从?Geoffrey Hinton 的 Capsule 能够解决这一问题吗?



科技公司正在借助机器学习的强大能力,将人工智能推向世界的每个角落。但是令人激动不已的深度神经网络有一个很大的弱点:轻微变动图像、文本或语音数据就可以欺骗这些系统,造成感知误判。


这对机器学习产品是一个大问题,尤其是在视觉方面,比如自动驾驶汽车。研究人员正努力应对上述问题——但结果证明这很有难度。


案例:今年一月,人工智能顶级会议 ICLR 2018 公布了 11 篇将在 4 月份会议上展示的新论文,全部是关于如何防御或检测对抗性攻击的。仅仅在三天之后,MIT 博士生 Anish Athalye 发文称已攻破上述论文中的七篇,其中不乏大机构的论文,比如谷歌、亚马逊、斯坦福。Athalye 说:「一个有创意的攻击者总能绕过这些防御」。该项目由 Athalye 与 Nicholas Carlini、David Wagner 共同完成,后两者分别是伯克利的一名毕业生和教授。


学界对这个三人小组项目的特定细节进行了反复探讨。但有一点几乎没有异议:目前还不清楚如何保护基于深度神经网络的产品(比如消费品和自动驾驶)免受「幻觉」(hallucination)的侵袭。「所有这些系统都很脆弱,机器学习社区没有评估安全性的方法论。」Battista Biggio 说道,他是意大利卡利亚里大学的助理教授,用大约十年时间思考机器学习的安全问题。


人类读者可轻松识别 Athalye 创建的下图,图片上是两个正在滑雪的男人。但是在周四上午的测试中,谷歌的 Cloud Vision 服务却认为 91% 的概率是一只狗。类似的还有如何使停车标志不可见,或者人类认为内容良性的语音却被软件转录为「好的谷歌,浏览不良网站」(okay google, browse to evil.com)。



「目前,此类攻击只发生在实验室中,而没有公开测试。但是我们仍需严肃对待」,加州大学伯克利分校博士后 Bo Li 说。自动驾驶汽车的视觉系统和能够执行消费的语音助手、过滤网络不良内容的机器学习系统都必须是可靠的。「这实际上非常危险。」Li 认为,她去年参与了「在停车标志上粘贴纸从而使机器学习系统无法识别」的研究。


Athalye 及其合作者实验过的论文就包括 Li 作为共同作者撰写的一篇论文。她和加州大学伯克利分校的同仁介绍了一种分析对抗攻击的方法,该方法可用于检测对抗攻击。Li 辩证地看待 Athalye 关于防御可攻破的项目,认为此类反馈可以帮助研究者进步。「他们的攻击表明我们还需要考虑很多问题。」Li 说道。


Yang Song,Athalye 分析中涉及的一篇斯坦福研究的一作,拒绝对此进行评价,他的这篇论文仍在接受另一个重要会议的审核。Zachary Lipton,卡内基梅隆大学教授,也是另一篇论文的共同作者(作者还包括来自亚马逊的研究者),称他尚未仔细看 Athalye 的分析,但是所有现有防御可被规避是合理的。谷歌拒绝对此分析作出评价,称计划更新其 Cloud Vision 服务,以抵御此类攻击。


要想更好抵御此类攻击,机器学习研究者可能需要更加严苛。Athalye 和 Biggio 认为应该应该借鉴安防研究的实践经验,更加严谨地测试新防御技术。「机器学习研究者倾向于信任彼此,」Biggio 说道,「而安全问题恰恰相反,你必须一直对可能性保持警惕。」


上个月来自 AI 和国家安全研究者的一份报告给出了类似的建议。该报告建议机器学习研究者更多地考虑他们所创造的技术被错误使用/利用的情况。


防御对抗攻击可能对一些 AI 系统来讲较为简单。Biggio 称,用于检测恶性软件的学习系统更易增强鲁棒性,原因之一是恶性软件是功能性的,限制了其变化程度;保护计算机视觉系统更加困难,因为自然世界变化万千,图像包含那么多像素。


解决该问题(该问题对自动驾驶汽车的设计者也是一个挑战)可能需要更加彻底地反思机器学习技术。「我认为基本问题在于深度神经网络与人脑的巨大差异。」Li 说道。


人类无法对感官欺骗完全免疫。我们会被视错觉蒙蔽,谷歌近期发布的一篇论文创建了一张图像,既可以欺骗机器,也能够迷惑人类(在不到 1/10 秒时间内看到该图像的人错把猫认成了狗)。但是我们在解析图像时看到的不止是像素模式,还要考虑图像不同组件之间的关系,如人脸的特征,Li 说道。


谷歌最杰出的机器学习研究者 Geoff Hinton 试图赋予机器这种能力。他认为 capsule network 这种新方法允许机器学习从少量图像中识别物体,而不是从数千张图像种学习。Li 认为具备更接近人类视角的机器应该会更少地受到幻觉影响。她和加州大学伯克利分校的同仁已与神经学家和生物学家展开合作,尝试从大自然中获取启发。 


原文地址:https://www.wired.com/story/ai-has-a-hallucination-problem-thats-proving-tough-to-fix/



点击下方“阅读原文”了解【人工智能实验平台】
↓↓↓

这篇关于谁来治好AI的「幻觉」?面对众多对抗样本攻击,深度神经网络该何去何从的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898136

相关文章

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti