NLP09_机器学习、监督学习、模型搭建流程、朴素贝叶斯、系统评估、准确率,精确率召回率,F1-Measure

本文主要是介绍NLP09_机器学习、监督学习、模型搭建流程、朴素贝叶斯、系统评估、准确率,精确率召回率,F1-Measure,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于概率的系统

给定数据集,X代表特征信息,y代表标签
最终学习到x到y的映射关系f
模型f可以表示线性回归、逻辑回归、神经网络

nlp依赖于机器学习

机器学习

在这里插入图片描述

算法分类

监督学习,给定标签。无监督学习只有特征,没有标签
朴素贝叶斯:用于文本分类(垃圾邮件过滤,情感分析)上
逻辑回归:
CRF:
HMM:常用于语言识别
LDA:抽取文本主题
GMM:高斯回归模型
在这里插入图片描述

监督学习

在这里插入图片描述
在这里插入图片描述

无监督学习,

因为没有标签,也就不会产生f这样一个模型,所以更多的是做数据分析
比如将数据进行聚类分析
工业界主流还是监督学习。
K-means常用作聚类操作,占绝大多数聚类场景
PCA:根据协方差矩阵进行降维
MF:矩阵分解,最常用于推荐系统
LDA:用于文本分析,分析出主题
在这里插入图片描述

生成模型和判别模型

生成模型:已经训练好了模型,来生成文本或t图片。模型要记住猫和狗的特点,然后可以用于生成猫或狗的图片
判别模型:只记住猫和狗的区别,而不去记住他们的各自特点,所以也不能用于生成图片。基于x,去做出判断y,得到最大的概率
在这里插入图片描述

AI模型的搭建流程

1、首先要有数据,
2、然后清洗数据,要很重视
3、接着特征工程,也就是确定x,我要从数据里面提取出来关键的信息,也就是特征。
特征工程占据很大成本,70%的时间是在设计特征工程,然后就是一些调参的工作
特征的好坏决定选择模型以后准确率的一个上限,
好的特征可以让你经过调参和选择模型,让系统的准确率达到很高,
坏的特战可能最高的准确率存在一个上限瓶颈。
4、建模
5、预测
在这里插入图片描述

端到端的流程

将特征工程这一步去掉,不做特征工程,这就是端到端的过程
我只是把数据灌进去,然后通过算法去学习。相当于把特征工程和建模整合到了模型里。
但是不是所有的领域都可以使用端到端的方式, NLP领域这种方式大部分情况效果不好。
但是图像识别领域有很好的效果。
在这里插入图片描述
我们把数据分为训练集和测试集,训练集上训练模型

朴素贝叶斯

适合于文本分类,如:垃圾邮件识别
在这里插入图片描述
在这里插入图片描述
计算邮件中每个单词出现的概率

先验信息

在这里插入图片描述

贝叶斯定理

在这里插入图片描述

条件独立

在这里插入图片描述

垃圾邮件预测

假定我已经将邮件中的句子通过分词工具切分
其实最终要的就是邮件是正常还是垃圾的一个概率。
在这里插入图片描述

例子

给出垃圾邮件和正常邮件各3个
先计算先验概率,计算出垃圾邮件和正常邮件所占的比例
构建词库v
注意几点问题:
1、在计算正常邮件和垃圾邮件中单词出现概率中,避免出现单词计算概率为0的情况,所以加了add-one soomthing平滑项
2、在最终预测时出现概率连乘,这样最终的乘积可能会是一个小数点后位数太多,超过了计算机的表示范围,所以报错overflow。为避免这种情况,所以一般计算概率的对数,对数函数是严格递增函数,不影响最终结果的判断,同时也会将连乘变为了对数的相加,更简单
在这里插入图片描述

评估系统

评估方法:
1、准确率
但样本比例不均衡时,准确率这种评估方法不适用,比如负样本90%,正样本10%
比如做一个癌症检测模型,我在训练集中有1000个人,只有5个人是确诊癌症患者,作为正样本。
当我训练模型以后,假如我对测试数据都判断为未得癌症,那这个判断的准确率能达到99。5%,显然这个概率很高,但是它的意义却不大
2、精确率和召回率
selected表示系统判断有癌症的人群,假如判断出10个有癌症,但是实际上只有8个有,还有两个是判断错的,那么精确率就是80%
no selected表示系统判断为没有得癌症的人群,
correct表示实际确实得癌症的,not correct表示实际没有癌症的。
召回率就是看Correct这一列,总共实际的癌症患者是10个,但是系统只判断出8个,另外两个判断为没有得癌症,所以召回率是80%
TP:true positive
FN:false negative

在这里插入图片描述

精确率和召回率是一个互斥关系,精确率增加的同时,召回率在下降
所以一般是要求精确率和召回率都大于某个设定的阈值,那么就满足上线的标准。
在这里插入图片描述

考虑怎样把精确率和召回率合并到一起,组合成一个数字来表示评估的标准

F1-Measure

基于精确率和召回率得到的一个计算公式
目的就是将对系统的多个维度的评价合并成一个维度去考虑。
可以计算出正样本的F1和负样本的F1,最后做平均得到整体样本的一个F1
如果是三个维度以上,类似,最后做平均即可
在这里插入图片描述
正样本和负样本,是考虑全部样本的结果
比如对于正常邮件,是以正常邮件和垃圾邮件总和中去找的,也就是系统判断的正常邮件的结果

在这里插入图片描述
准确率是(16+3)/25

这篇关于NLP09_机器学习、监督学习、模型搭建流程、朴素贝叶斯、系统评估、准确率,精确率召回率,F1-Measure的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888197

相关文章

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

使用DeepSeek搭建个人知识库(在笔记本电脑上)

《使用DeepSeek搭建个人知识库(在笔记本电脑上)》本文介绍了如何在笔记本电脑上使用DeepSeek和开源工具搭建个人知识库,通过安装DeepSeek和RAGFlow,并使用CherryStudi... 目录部署环境软件清单安装DeepSeek安装Cherry Studio安装RAGFlow设置知识库总

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

在VSCode中本地运行DeepSeek的流程步骤

《在VSCode中本地运行DeepSeek的流程步骤》本文详细介绍了如何在本地VSCode中安装和配置Ollama和CodeGPT,以使用DeepSeek进行AI编码辅助,无需依赖云服务,需要的朋友可... 目录步骤 1:在 VSCode 中安装 Ollama 和 CodeGPT安装Ollama下载Olla

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

linux环境openssl、openssh升级流程

《linux环境openssl、openssh升级流程》该文章详细介绍了在Ubuntu22.04系统上升级OpenSSL和OpenSSH的方法,首先,升级OpenSSL的步骤包括下载最新版本、安装编译... 目录一.升级openssl1.官网下载最新版openssl2.安装编译环境3.下载后解压安装4.备份

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo