深度学习特征提取新突破!42个涨点方案,让模型性能、效率倍增

本文主要是介绍深度学习特征提取新突破!42个涨点方案,让模型性能、效率倍增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为数据预处理的一个重要步骤,特征提取是CV领域一个复杂但不可或缺的过程。它通过某种变换或映射,从原始数据中提取出对目标任务更有帮助的信息,以提高模型性能、降低计算成本、提升数据可解释性和模型泛化能力。

目前,特征提取主要有2大类主流方法:基于检测器的方法、无检测器的方法。基于检测器的方法依赖于手工设计的特征或者通过训练得到的深度神经网络来提取特征点,而无检测器的方法则直接从数据中提取特征,两者各有优势。

在实际应用中,选择合适的特征提取方法对后续模型的性能提升至关重要。本文介绍这2大类主流特征提取方法,并细分了7个具体方向,每种方法都附有代表论文以及相应代码(共42篇),方便同学们pick合适的方法,高效涨点。

论文原文以及代码需要的同学看文末

基于检测器的方法

这类方法通常包括以下几个关键步骤:首先,使用检测器在图像中定位到可能的特征点或区域;然后,对这些特征点或区域进行描述,生成特征向量;最后,利用这些特征向量进行后续的任务,如分类、识别等。这类方法的典型代表包括SIFT、SURF和ORB等算法。

1.先检测后描述

ZippyPoint: Fast Interest Point Detection, Description, and Matching through Mixed Precision Discretization

方法:研究的重点是网络量化技术和二进制描述符规范化层的应用,以加快推理速度并在计算能力有限的平台上使用。通过提出的ZippyPoint网络,研究成功地提高了网络运行速度、描述符匹配速度和3D模型大小,从而实现了至少一个数量级的改进。

创新点:

  • 基于深度学习的轻量级二进制描述符:作者提出了ZippyPoint,这是一个通过网络量化和二进制描述符实现高效检测和描述的方法。相比传统的手工算法,ZippyPoint在计算资源有限的平台上实现了至少一个数量级的提速,并且在性能上与全精度模型相媲美。

  • 二进制描述符的标准化层:为了优化二进制描述符的性能,作者引入了二进制标准化(Bin.Norm)层,将描述符限制为具有恒定数量的1。通过使用Bin.Norm层,ZippyPoint在功能性能上显著改善,并且优于其他二进制描述符方法,如ORB和BRISK。

2.联合检测与描述

SFD2: Semantic-guided Feature Detection and Description

方法:论文提出了一种将高级语义信息隐式嵌入到特征检测和描述的过程中的方法,使模型能够在测试时直接从单一网络提取具有全局可靠性的特征。具体地说,在训练过程中,作者使用现成的语义分割网络的输出作为指导,并采用了语义感知和特征感知的结合策略来增强嵌入语义信息的能力。

创新点:

  • 隐式嵌入高级语义信息:通过在特征检测和描述过程中隐式嵌入语义信息,使模型能够从单个网络中端到端地提取全局可靠的特征。

  • 与先进的匹配器相媲美的性能和更高的效率:本文方法通过将高级语义信息隐式地嵌入到局部特征中,既提高了特征检测和描述的准确性,又避免了使用昂贵的匹配方法。因此,本文方法在精度和效率之间取得了良好的平衡,尤其适用于计算资源有限的设备。

3.描述后检测

Shared Coupling-bridge for Weakly Supervised Local Feature Learning

方法:本文提出了一种增强的弱监督局部特征学习架构SCFeat。在局部特征学习方面,本文引入了F2R-Backbone用于局部描述符的学习。为了提高局部特征学习的效率,本文设计了共享耦合桥归一化方案,用于描述网络和检测网络的解耦训练。此外,本文还设计了一个增强的检测网络,通过峰值测量实现更准确的关键点定位。同时,本文采用基础矩阵误差作为新的奖励因子,以增强特征检测训练。

创新点:

  • SCFeat提出了一个F2R-Backbone用于局部描述符学习,通过增加描述网络和检测网络之间的共享耦合桥归一化来提高描述网络和检测网络的训练效率。

  • SCFeat使用峰值度量来衡量候选关键点的可靠性,综合考虑空间和通道响应。

  • SCFeat在图像匹配、视觉定位和三维重建任务中取得了优越的性能,超过了其他基线方法。

4.基于图的方法

Learning Feature Matching via Matchable Keypoint-Assisted Graph Neural Network

方法:论文提出一种名为MaKeGNN的图神经网络,用于学习特征匹配。通过引入BCAS模块和MKACA模块,MaKeGNN能够以紧凑而稳健的注意力模式聚合上下文信息。

创新点:

  • MaKeGNN方法引入了BCAS模块和MKACA模块,实现了紧凑而强大的信息传递,从而在特征匹配任务中取得了最先进的性能,同时显著降低了计算和内存复杂度。

  • MaKeGNN方法通过动态采样两组具有高匹配性分数的均匀分布的关键点,引导网络进行紧凑而有意义的信息传递,避免了与非可重复关键点的冗余连接和干扰,从而提高了特征匹配的准确性和效率。

  • MaKeGNN方法在相对相机估计、基础矩阵估计和视觉定位等任务上取得了最先进的性能,同时在计算和内存复杂度方面显著降低,具有很高的实用价值和应用前景。

无检测器的方法

这类方法不依赖于显式的特征点或区域检测步骤,通常直接对图像进行全局或局部的分析,通过深度学习模型等工具自动学习并提取特征。比如CNN就是一种典型的无检测器特征提取方法。此外还有一些基于CNN的改进算法,如Fast R-CNN、Faster R-CNN和YOLO等。

1.基于CNN的方法

DeepMatcher: A Deep Transformer-based Network for Robust and Accurate Local Feature Matching

方法:DeepMatcher的主要研究目标是开发一个深度局部特征匹配网络,以提供更易于匹配的人类直观特征,并减少计算复杂性。为了实现这个目标,DeepMatcher采用了Slimming Transformer(SlimFormer)来进行深度特征聚合和长程上下文建模,并引入相对位置编码和特征转换模块(FTM)来提高匹配性能。

创新点:

  • DeepMatcher引入了SlimFormer,这是一种专门为DeepMatcher设计的精简Transformer。SlimFormer利用基于向量的注意力来建模所有关键点之间的相关性,并以高效和有效的方式实现了长程上下文聚合。同时,SlimFormer还应用了相对位置编码,以显式地揭示相对距离信息,从而进一步提高关键点的表示。

  • 为了确保从局部特征提取器到SlimFormer之间的平滑过渡,DeepMatcher引入了FTM。FTM通过采用(1×1, 3×3, 5×5, 7×7)深度卷积和1×1点卷积,调整提取特征的感受野,确保在SlimFormer中实现有效的深度特征交互。

2.基于transformer的方法

Gradient-Semantic Compensation for Incremental Semantic Segmentation

方法:论文提出一种梯度-语义补偿(GSC)模型,以克服增量语义分割的挑战,并解决灾难性遗忘和背景转移问题。通过重新加权梯度反向传播和提供强大的语义指导来平衡旧类的遗忘速度,以及通过伪标签进行背景中的高质量伪标签生成。

创新点:

  • 提出了一种梯度-语义补偿(GSC)模型来克服增量语义分割。这是早期考虑梯度和语义补偿的尝试。

  • 为了减轻灾难性遗忘,设计了一种步骤感知的梯度补偿,以平衡旧类别的不同遗忘速度,从梯度方面进行平衡。此外,通过构建来自语义方面的软标签,提出了一种软锐语义关系蒸馏,以保持类间语义关系的一致性。

  • 为了解决背景转移问题,提出了一种原型假标记重新标记方法,为背景中的旧类别生成高质量的伪标签,从而提供强大的语义指导。

3.基于Patch的方法

Structured Epipolar Matcher for Local Feature Matching

方法:本文提出了一种新颖的结构化极线匹配器(SEM),用于利用几何先验进行局部特征匹配。为了使特征更具区分度,作者设计了一种结构化特征提取器来补充外观特征。为了尽可能地排除干扰区域,作者提出了可迭代的粗匹配阶段中的极线注意力和匹配。

创新点:

  • 结构化极线匹配算法(SEM):该算法通过利用几何先验信息进行局部特征匹配。该算法设计了结构化特征提取器来补充外观特征,使其更具辨别性。同时,该算法利用极线几何先验来排除干扰区域,通过迭代的粗匹配过程逐步优化匹配结果。

  • 结构化特征提取器:该特征提取器通过利用像素之间的相对位置关系来构建结构化特征,从而克服了纹理缺失和重复纹理区域带来的挑战,提高了对应关系的准确性。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“特征42”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于深度学习特征提取新突破!42个涨点方案,让模型性能、效率倍增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886337

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了