本文主要是介绍分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测
目录
- 分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测
- 分类效果
- 基本介绍
- 程序设计
- 参考资料
分类效果
基本介绍
1.Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF 核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式资源处直接下载Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test = T_test;%% LS参数设置
type = 'c'; % 模型类型 分类
kernel_type = 'RBF_kernel'; % 线性核函数
codefct = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue; % 目标函数
dim = 2; % 优化参数个数
ub = [300, 300]; % 优化参数目标上限
lb = [1, 1]; % 优化参数目标下限pop = 8; % 数量
Max_iteration = 20; % 最大迭代次数 c = Best_pos(1);
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
这篇关于分类预测 | Matlab实现ABC-LSSVM人工蜂群算法优化最小二乘支持向量机数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!