前视声呐目标识别定位(三)-部署至机器人

2024-04-04 17:12

本文主要是介绍前视声呐目标识别定位(三)-部署至机器人,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前视声呐目标识别定位(一)-基础知识

前视声呐目标识别定位(二)-目标识别定位模块  

前视声呐目标识别定位(三)-部署至机器人

前视声呐目标识别定位(四)-代码解析之启动识别模块

前视声呐目标识别定位(五)-代码解析之修改声呐参数

前视声呐目标识别定位(六)-代码解析之目标截图并传输

前视声呐目标识别定位(七)-代码解析之录制数据包

前视声呐目标识别定位(八)-代码解析之各模块通信

前视声呐目标识别定位(九)-声呐驱动

        开发了多波束前视声呐目标识别定位模块后,自然期待能将声呐部署至AUV,实现AUV对目标的抵近观测。原本规划着定位模块不仅能将目标定位信息提供给AUV进行辅助导航,还能借助水声通信模块在水面实现在水面开关声呐及调节声呐参数,开关目标识别模块,传输目标图像向观测者展示,录制目标数据包以进行模型训练等。在先前的文章已经介绍了,前视声呐目标定位只能提供目标距离及水平开角信息,而缺少垂直开角的信息,所以使用前视声呐定位是无法得到目标物具体坐标信息的,只能起辅助作用。

      先前的文章已经介绍了声呐目标识别及定位模块,在部署过程中有许多问题,比较关键的有三个。首先是目标识别模块需要GPU算力板,算力板尺寸必须满足AUV布局的需求限制,同时要考虑散热的问题;再者声呐的驱动及目标识别模块都是在ubuntu下使用ROS/ROS2进行开发,而AUV的导航模块是性能普通的工控机,还是特制的系统,使用水声通信模块必须借助工控机做中继,只能考虑其它通信方式;最后水声通信的带宽非常低,是比较难满足图片传输的条件的。

      虽然接到任务时时间紧需求多任务重,鼓捣了一段时间还是开发出了一个小小的demo。不过开发完后整个项目都没有了,所以也没有部署至AUV进行下水测试,最终只能算是自娱自乐了。最近整理资料时在角落里发现了这些东西,虽然我也觉得整个框架粗糙且暴力,不尽如人意,但想着水下圈子这么小,资料这么少,把这个demo开源也许能为一些水下爱好者的研究开发提供一条不同的思路吧,同时也算是把这些工作做一个归档,日后可以查阅。

      项目github地址:GitHub - cabinx/yolov5_humble_fls_tcp: yolov5_humble_fls with tcp/ip transmission

      接下来处理上文提及的三个问题。首先综合考虑尺寸和算力后选择了NVIDIA XAVIER开发板,在密闭的舱段内散热的问题倒是没有啥好办法。再者XAVIER板和AUV的工控机之间通过TCP/IP通信,约定好协议就好。最后关于目标图片,只截取目标部分的图片,然后压缩编码传输,以满足水声通信的限制。

      整个软件的框架如下图。

1234

      在XAVIER板上center_server起一个处理中心的作用。其接收AUV工控机下发的指令信息,并转发给相应各个模块。同时接收各个模块的数据,封装后发送给AUV工控机。yolov5_humble_fls是目标识别模块,和之前的识别模块相比主要添加了TCP通信模块和截图封装传输模块。sonar_node是声呐驱动模块,当时选择的是Oculus m750d这款声呐。control center是指令转换模块,将auv下发的指令解包转换为shell指令以执行相应任务,非常粗暴,并不是非常推荐,只是当时简单地想着怎么简单怎么来。

      在工控机上auv_server也起信息中转的作用,接收水面指令转发给XAVIER板,同时接收XAVIER板数据转发给水面,但是需要根据协议解包目标数据以辅助导航。还有一个client test模块,是我用来模拟水面发送指令的测试模块。

      水声通信模块我没接触在此就不讨论了,但只要知道协议无非是在auv server上再添加相应的编解码。

      框架原先我是在ROS Neotic下写的,测试时Oculus 750d声呐通过网线和XAVIER板连接,然后用我的台式机模拟AUV的工控机,直接用一根网线连接,测试基本实现了各个功能。现在我用ROS2 humble大致重新整理了一遍,测试就只在我的台式机测试了,台式机既模拟XAVIER板,又模拟AUV工控机。此外我手头上已经没有声呐进行测试了,所以声呐驱动模块我就没有在ROS2重新整理,以后我会将之前写的ROS版本的上传至github,该版本是测试过是能正常接收发布声呐数据的。

      目前只能使用离线数据包进行测试,将声呐数据包下载至bag文件夹下,启动auv_server.py,center_sever.py,control_center.py。然后通过client_test.py脚本进行测试。后续我会通过几个例子介绍整个框架的信息流。

python3 client_test.py 1 1      #启动识别模块
python3 client_test.py 5 1      #播放离线数据包
python3 client_test.py 7 1      #对识别到的目标截图传输
python3 client_test.py 8 1      #开始录制数据包
python3 client_test.py 9 1      #结束录制数据包
python3 client_test.py 6 1      #结束播放离线数据包
python3 client_test.py 2 1      #结束识别模块python3 client_test.py 3 1      #启动声呐模块
python3 client_test.py 4 1      #关闭声呐模块python3 client_test.py 11 1/2   #切换声呐高低频,1为低频,2为高频
python3 client_test.py 12 100   #设定声呐gamma correction值为100
python3 client_test.py 13 20    #设定声呐量程为20m
python3 client_test.py 14 50    #设定增益为50
python3 client_test.py 15 1500  #设定声速为1500
python3 client_test.py 16 25    #设定盐度为25

        当时还想过实际应用中把这些指令做个图形界面的话将会方便不少,现在暂时不需要了。

        当初ROS1版本时测试时,台式机及XAVIER板的系统均为Ubuntu20.04,ROS版本为Neotic;ROS2版本测试时,台式机版本为Ubuntu22.04,ROS版本为Humble。

       ROS1 Neotic版本测试视频:

yolov5-ros1-test

         整理后ROS2 Humble版本测试视频:

yolov5-sonar-test

这篇关于前视声呐目标识别定位(三)-部署至机器人的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876375

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

在 Windows 上部署 gitblit

在 Windows 上部署 gitblit 在 Windows 上部署 gitblit 缘起gitblit 是什么安装JDK部署 gitblit 下载 gitblit 并解压配置登录注册为 windows 服务 修改 installService.cmd 文件运行 installService.cmd运行 gitblitw.exe查看 services.msc 缘起

Solr部署如何启动

Solr部署如何启动 Posted on 一月 10, 2013 in:  Solr入门 | 评论关闭 我刚接触solr,我要怎么启动,这是群里的朋友问得比较多的问题, solr最新版本下载地址: http://www.apache.org/dyn/closer.cgi/lucene/solr/ 1、准备环境 建立一个solr目录,把solr压缩包example目录下的内容复制

Spring Roo 实站( 一 )部署安装 第一个示例程序

转自:http://blog.csdn.net/jun55xiu/article/details/9380213 一:安装 注:可以参与官网spring-roo: static.springsource.org/spring-roo/reference/html/intro.html#intro-exploring-sampleROO_OPTS http://stati

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体

部署若依Spring boot项目

nohup和& nohup命令解释 nohup命令:nohup 是 no hang up 的缩写,就是不挂断的意思,但没有后台运行,终端不能标准输入。nohup :不挂断的运行,注意并没有后台运行的功能,就是指,用nohup运行命令可以使命令永久的执行下去,和用户终端没有关系,注意了nohup没有后台运行的意思;&才是后台运行在缺省情况下该作业的所有输出都被重定向到一个名为nohup.o

kubernetes集群部署Zabbix监控平台

一、zabbix介绍 1.zabbix简介 Zabbix是一个基于Web界面的分布式系统监控的企业级开源软件。可以监视各种系统与设备的参数,保障服务器及设备的安全运营。 2.zabbix特点 (1)安装与配置简单。 (2)可视化web管理界面。 (3)免费开源。 (4)支持中文。 (5)自动发现。 (6)分布式监控。 (7)实时绘图。 3.zabbix的主要功能