机器学习-采用正态贝叶斯分类器、决策树、随机森林对abalone数据集分类

本文主要是介绍机器学习-采用正态贝叶斯分类器、决策树、随机森林对abalone数据集分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.abalone(鲍鱼)数据集描述

http://archive.ics.uci.edu/ml/datasets/Abalone

总共包含4177条数据,每条数据中包含8个特征值,一个分类(鲍鱼年龄,看看圈数),可以看做是分类问题或者回归问题


2.数据集预处理

数据的部分展示

Sex / nominal / -- / M, F, and I (infant) 
Length / continuous / mm / Longest shell measurement 
Diameter / continuous / mm / perpendicular to length 
Height / continuous / mm / with meat in shell 
Whole weight / continuous / grams / whole abalone 
Shucked weight / continuous / grams / weight of meat 
Viscera weight / continuous / grams / gut weight (after bleeding) 
Shell weight / continuous / grams / after being dried 
Rings / integer / -- / +1.5 gives the age in years 

M 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
M 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
F 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9
M 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
I 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7


为了便于写程序,我把数据文件中的M、F、I分别替换成1,2,3。(注:为什么要这么做?方便编程而已,有些机器学习库直接读取的话可能会因为数据类型碰到一些问题)


3.代码实例(我采用opencv3.0中的机器学习库来做实验)

#include "opencv2/ml/ml.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/core/utility.hpp"
#include <stdio.h>
#include <string>
#include <map>
#include <vector>
#include<iostream>using namespace std;
using namespace cv;
using namespace cv::ml;static void help()
{printf("\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees.\n""Usage:\n\t./tree_engine [-r <response_column>] [-ts type_spec] <csv filename>\n""where -r <response_column> specified the 0-based index of the response (0 by default)\n""-ts specifies the var type spec in the form ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\n""<csv filename> is the name of training data file in comma-separated value format\n\n");
}static void train_and_print_errs(Ptr<StatModel> model, const Ptr<TrainData>& data)
{bool ok = model->train(data);if (!ok){printf("Training failed\n");}else{printf("train error: %f\n", model->calcError(data, false, noArray()));printf("test error: %f\n\n", model->calcError(data, true, noArray()));}
}int main(int argc, char** argv)
{if (argc < 2){help();return 0;}const char* filename = 0;int response_idx = 0;std::string typespec;for (int i = 1; i < argc; i++){if (strcmp(argv[i], "-r") == 0)sscanf(argv[++i], "%d", &response_idx);else if (strcmp(argv[i], "-ts") == 0)typespec = argv[++i];else if (argv[i][0] != '-')filename = argv[i];else{printf("Error. Invalid option %s\n", argv[i]);help();return -1;}}printf("\nReading in %s...\n\n", filename);const double train_test_split_ratio = 0.5;//加载训练数据//Ptr<TrainData> data = TrainData::loadFromCSV(filename, 0, response_idx, response_idx + 1, typespec);Ptr<TrainData> data = TrainData::loadFromCSV(filename, 0);if (data.empty()){ printf("ERROR: File %s can not be read\n", filename);return 0;}data->setTrainTestSplit(train_test_split_ratio);printf("============正太贝叶斯分类器================\n");//创建正态贝叶斯分类器Ptr<NormalBayesClassifier> bayes = NormalBayesClassifier::create();//训练模型train_and_print_errs(bayes, data);//保存模型bayes->save("bayes_result.xml");//读取模型,强行使用一下,为了强调这种用法,当然此处完全没必要/*Ptr<NormalBayesClassifier> bayes2 = NormalBayesClassifier::load<NormalBayesClassifier>("bayes_result.xml");cout << bayes2->predict(test1Map) << endl;cout << bayes2->predict(test2Map) << endl;cout << bayes2->predict(test3Map) << endl;*/cout << "============================================" << endl;printf("======DTREE=====\n");//创建决策树Ptr<DTrees> dtree = DTrees::create();dtree->setMaxDepth(10);    //设置决策树的最大深度dtree->setMinSampleCount(2);  //设置决策树叶子节点的最小样本数dtree->setRegressionAccuracy(0);  //设置回归精度dtree->setUseSurrogates(false);   //不使用替代分叉属性dtree->setMaxCategories(16);   //设置最大的类数量dtree->setCVFolds(0);  //设置不交叉验证dtree->setUse1SERule(false);  //不使用1SE规则dtree->setTruncatePrunedTree(false);  //不对分支进行修剪dtree->setPriors(Mat());  //设置先验概率train_and_print_errs(dtree, data);dtree->save("dtree_result.xml");读取模型,强行使用一下,为了强调这种用法,当然此处完全没必要//Ptr<DTrees> dtree2 = DTrees::load<DTrees>("dtree_result.xml");//cout << dtree2->predict(test1Map) << endl;//cout << dtree2->predict(test2Map) << endl;//cout << dtree2->predict(test3Map) << endl;cout << "============================================" << endl;//if ((int)data->getClassLabels().total() <= 2) // regression or 2-class classification problem//{//	printf("======BOOST=====\n");//	Ptr<Boost> boost = Boost::create();//	boost->setBoostType(Boost::GENTLE);//	boost->setWeakCount(100);//	boost->setWeightTrimRate(0.95);//	boost->setMaxDepth(2);//	boost->setUseSurrogates(false);//	boost->setPriors(Mat());//	train_and_print_errs(boost, data);//}printf("======RTREES=====\n");Ptr<RTrees> rtrees = RTrees::create();rtrees->setMaxDepth(10);rtrees->setMinSampleCount(2);rtrees->setRegressionAccuracy(0);rtrees->setUseSurrogates(false);rtrees->setMaxCategories(16);rtrees->setPriors(Mat());rtrees->setCalculateVarImportance(false);rtrees->setActiveVarCount(0);rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 0));train_and_print_errs(rtrees, data);cout << "============================================" << endl;return 0;
}
我们可以通过控制数据集的记录条数来观察不同方法的效果

读10条数据的效果:


读100条数据的效果:


读1000条数据的效果:


读3000条数据的效果:


读4177条数据的效果:

仅从此次试验的运行过程中可以发现,随机森林的分类效果最好,但计算过程比较耗时,随着训练数据量的增大,三者的效果都趋于越来越差。

这篇关于机器学习-采用正态贝叶斯分类器、决策树、随机森林对abalone数据集分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874202

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解