LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5

2024-04-01 05:44

本文主要是介绍LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

BGE embedding系列模型是由智源研究院研发的中文版文本表示模型。

可将任意文本映射为低维稠密向量,以用于检索、分类、聚类或语义匹配等任务,并可支持为大模型调用外部知识。

BAAI/BGE embedding系列模型

模型列表

ModelLanguageDescriptionquery instruction for retrieval [1]
BAAI/bge-m3Multilingual推理 微调多功能(向量检索,稀疏检索,多表征检索)、多语言、多粒度(最大长度8192)
LM-CocktailEnglish微调的Llama和BGE模型,可以用来复现LM-Cocktail论文的结果
BAAI/llm-embedderEnglish推理 微调专为大语言模型各种检索增强任务设计的向量模型详见 README
BAAI/bge-reranker-largeChinese and English推理 微调交叉编码器模型,精度比向量模型更高但推理效率较低 [2]
BAAI/bge-reranker-baseChinese and English推理 微调交叉编码器模型,精度比向量模型更高但推理效率较低 [2]
BAAI/bge-large-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-base-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-small-en-v1.5English推理 微调1.5版本,相似度分布更加合理Represent this sentence for searching relevant passages:
BAAI/bge-large-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-base-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-small-zh-v1.5Chinese推理 微调1.5版本,相似度分布更加合理为这个句子生成表示以用于检索相关文章:
BAAI/bge-large-enEnglish推理 微调向量模型,将文本转换为向量Represent this sentence for searching relevant passages:
BAAI/bge-base-enEnglish推理 微调base-scale 向量模型Represent this sentence for searching relevant passages:
BAAI/bge-small-enEnglish推理 微调small-scale 向量模型Represent this sentence for searching relevant passages:
BAAI/bge-large-zhChinese推理 微调向量模型,将文本转换为向量为这个句子生成表示以用于检索相关文章:
BAAI/bge-base-zhChinese推理 微调base-scale 向量模型为这个句子生成表示以用于检索相关文章:
BAAI/bge-small-zhChinese推理 微调small-scale 向量模型为这个句子生成表示以用于检索相关文章:

C_MTEB榜单:Embedding

目前看榜单的话BAAI/bge-large-zh-v1.5是居于榜首的。(这里仅就刷榜而言)

ModelEmbedding dimensionAvgRetrievalSTSPairClassificationClassificationRerankingClustering
BAAI/bge-large-zh-v1.5102464.5370.4656.2581.669.1365.8448.99
BAAI/bge-base-zh-v1.576863.1369.4953.7279.7568.0765.3947.53
BAAI/bge-small-zh-v1.551257.8261.7749.1170.4163.9660.9244.18
BAAI/bge-large-zh102464.2071.5354.9878.9468.3265.1148.39
BAAI/bge-large-zh-noinstruct102463.5370.555376.7768.5864.9150.01
BAAI/bge-base-zh76862.9669.5354.1277.567.0764.9147.63
multilingual-e5-large102458.7963.6648.4469.8967.3456.0048.23
BAAI/bge-small-zh51258.2763.0749.4570.3563.6461.4845.09
m3e-base76857.1056.9150.4763.9967.5259.3447.68
m3e-large102457.0554.7550.4264.368.259.6648.88
multilingual-e5-base76855.4861.6346.4967.0765.3554.3540.68
multilingual-e5-small38455.3859.9545.2766.4565.8553.8645.26
text-embedding-ada-002(OpenAI)153653.0252.043.3569.5664.3154.2845.68
luotuo102449.3744.442.7866.626149.2544.39
text2vec-base76847.6338.7943.4167.4162.1949.4537.66
text2vec-large102447.3641.9444.9770.8660.6649.1630.02

bge-large-zh-v1.5

发布bge-*-v1.5向量模型,缓解相似度分布问题,提升无指令情况下的检索能力(但检索任务仍建议使用指令)

使用示例:

from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T

使用示例2:

在上篇文章LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力_failed to parse tool call, maybe the response is n-CSDN博客

中部署ChatGLM3-6B并提供HTTP server能力时,也是显示的用了 bge-large-zh-v1.5 embedding,可以让用户测试输入对应的embedding。(LLM实际使用的是tokenizer,默认包含了分词和embedding等)

@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def get_embeddings(request: EmbeddingRequest):embeddings = [embedding_model.encode(text) for text in request.input]embeddings = [embedding.tolist() for embedding in embeddings]

 参考

  1. LLM大语言模型(七):部署ChatGLM3-6B并提供HTTP server能力
  2. LLM大语言模型(四):在ChatGLM3-6B中使用langchain_chatglm3-6b langchain-CSDN博客
  3. LLM大语言模型(一):ChatGLM3-6B本地部署-CSDN博客

 

这篇关于LLM大语言模型(八):ChatGLM3-6B使用的tokenizer模型BAAI/bge-large-zh-v1.5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866346

相关文章

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

Java之并行流(Parallel Stream)使用详解

《Java之并行流(ParallelStream)使用详解》Java并行流(ParallelStream)通过多线程并行处理集合数据,利用Fork/Join框架加速计算,适用于大规模数据集和计算密集... 目录Java并行流(Parallel Stream)1. 核心概念与原理2. 创建并行流的方式3. 适

基于Python实现多语言朗读与单词选择测验

《基于Python实现多语言朗读与单词选择测验》在数字化教育日益普及的今天,开发一款能够支持多语言朗读和单词选择测验的程序,对于语言学习者来说无疑是一个巨大的福音,下面我们就来用Python实现一个这... 目录一、项目概述二、环境准备三、实现朗读功能四、实现单词选择测验五、创建图形用户界面六、运行程序七、

如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件

《如何使用Docker部署FTP和Nginx并通过HTTP访问FTP里的文件》本文介绍了如何使用Docker部署FTP服务器和Nginx,并通过HTTP访问FTP中的文件,通过将FTP数据目录挂载到N... 目录docker部署FTP和Nginx并通过HTTP访问FTP里的文件1. 部署 FTP 服务器 (

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C