20240320-1-梯度下降

2024-03-28 02:12
文章标签 梯度 下降 20240320

本文主要是介绍20240320-1-梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

梯度下降法面试题

在这里插入图片描述

1. 机器学习中为什么需要梯度下降

梯度下降的作用:

  • 梯度下降是迭代法的一种,可以用于求解最小二乘问题
  • 在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。
  • 如果我们需要求解损失函数的最大值,可通过梯度上升法来迭代。梯度下降法和梯度上升法可相互转换

2. 梯度下降法缺点

缺点

  • 靠近极小值时收敛速度减慢。
  • 直线搜索时可能会产生一些问题。
  • 可能会“之字形”地下降。

注意

  • 梯度是一个向量,即有方向有大小
  • 梯度的方向是最大方向导数的方向
  • 梯度的值是最大方向导数的值

3. 梯度下降法直观理解

假如最开始,我们在一座大山上的某处位置,因为到处都是陌生的,不知道下山的路,所以只能摸索着根据直觉,走一步算一步,在此过程中,每走到一个位置的时候,都会求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。不断循环求梯度,就这样一步步地走下去,一直走到我们觉得已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山势低处。
​ 由此,从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部的最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。

4. 梯度下降核心思想归纳

  • 确定优化模型的假设函数及损失函数。
  • 初始化参数,随机选取取值范围内的任意数;
  • 迭代操作:
    • 计算当前梯度
    • 修改新的变量
    • 计算朝最陡的下坡方向走一步
    • 判断是否需要终止,如否,梯度更新
  • 得到全局最优解或者接近全局最优解。

5. 如何对梯度下降法进行调优

实际使用梯度下降法时,各项参数指标不能一步就达到理想状态,对梯度下降法调优主要体现在以下几个方面:

(1)算法迭代步长 α \alpha α选择。
在算法参数初始化时,有时根据经验将步长初始化为1。实际取值取决于数据样本。可以从大到小,多取一些值,分别运行算法看迭代效果,如果损失函数在变小,则取值有效。如果取值无效,说明要增大步长。但步长太大,有时会导致迭代速度过快,错过最优解。步长太小,迭代速度慢,算法运行时间长。

(2)参数的初始值选择。
初始值不同,获得的最小值也有可能不同,梯度下降有可能得到的是局部最小值。如果损失函数是凸函数,则一定是最优解。由于有局部最优解的风险,需要多次用不同初始值运行算法,关键损失函数的最小值,选择损失函数最小化的初值。

(3)标准化处理。
由于样本不同,特征取值范围也不同,导致迭代速度慢。为了减少特征取值的影响,可对特征数据标准化,使新期望为0,新方差为1,可节省算法运行时间。

6. 随机梯度和批量梯度区别

​ 随机梯度下降(SDG)和批量梯度下降(BDG)是两种主要梯度下降法,其目的是增加某些限制来加速运算求解。
下面通过介绍两种梯度下降法的求解思路,对其进行比较。
假设函数为:
h θ ( x 0 , x 1 , . . . , x 3 ) = θ 0 x 0 + θ 1 x 1 + . . . + θ n x n h_\theta (x_0,x_1,...,x_3) = \theta_0 x_0 + \theta_1 x_1 + ... + \theta_n x_n hθ(x0,x1,...,x3)=θ0x0+θ1x1+...+θnxn
损失函数为:
J ( θ 0 , θ 1 , . . . , θ n ) = 1 2 m ∑ j = 0 m ( h θ ( x 0 j , x 1 j , . . . , x n j ) − y j ) 2 J(\theta_0, \theta_1, ... , \theta_n) = \frac{1}{2m} \sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)^2 J(θ0,θ1,...,θn)=2m1j=0m(hθ(x0j,x1j,...,xnj)yj)2
其中, m m m为样本个数, j j j为参数个数。

1、 批量梯度下降的求解思路如下:
a) 得到每个 θ \theta θ对应的梯度:
∂ ∂ θ i J ( θ 0 , θ 1 , . . . , θ n ) = 1 m ∑ j = 0 m ( h θ ( x 0 j , x 1 j , . . . , x n j ) − y j ) x i j \frac{\partial}{\partial \theta_i}J({\theta}_0,{\theta}_1,...,{\theta}_n)=\frac{1}{m}\sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)x^{j}_i θiJ(θ0,θ1,...,θn)=m1j=0m(hθ(x0j,x1j,...,xnj)yj)xij
b) 由于是求最小化风险函数,所以按每个参数 θ \theta θ 的梯度负方向更新 $ \theta_i $ :
θ i = θ i − 1 m ∑ j = 0 m ( h θ ( x 0 j , x 1 j , . . . , x n j ) − y j ) x i j \theta_i=\theta_i - \frac{1}{m} \sum^{m}_{j=0}(h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n)-y^j)x^{j}_i θi=θim1j=0m(hθ(x0j,x1j,...,xnj)yj)xij
c) 从上式可以注意到,它得到的虽然是一个全局最优解,但每迭代一步,都要用到训练集所有的数据,如果样本数据很大,这种方法迭代速度就很慢。
相比而言,随机梯度下降可避免这种问题。

2、随机梯度下降的求解思路如下:
a) 相比批量梯度下降对应所有的训练样本,随机梯度下降法中损失函数对应的是训练集中每个样本的粒度。
损失函数可以写成如下这种形式,
J ( θ 0 , θ 1 , . . . , θ n ) = 1 m ∑ j = 0 m ( y j − h θ ( x 0 j , x 1 j , . . . , x n j ) ) 2 = 1 m ∑ j = 0 m c o s t ( θ , ( x j , y j ) ) J(\theta_0, \theta_1, ... , \theta_n) = \frac{1}{m} \sum^{m}_{j=0}(y^j - h_\theta (x^{j}_0 ,x^{j}_1,...,x^{j}_n))^2 = \frac{1}{m} \sum^{m}_{j=0} cost(\theta,(x^j,y^j)) J(θ0,θ1,...,θn)=m1j=0m(yjhθ(x0j,x1j,...,xnj))2=m1j=0mcost(θ,(xj,yj))
b)对每个参数 $ \theta$ 按梯度方向更新 $ \theta$:
θ i = θ i + ( y j − h θ ( x 0 j , x 1 j , . . . , x n j ) ) \theta_i = \theta_i + (y^j - h_\theta (x^{j}_0, x^{j}_1, ... ,x^{j}_n)) θi=θi+(yjhθ(x0j,x1j,...,xnj))
c) 随机梯度下降是通过每个样本来迭代更新一次。
随机梯度下降伴随的一个问题是噪音较批量梯度下降要多,使得随机梯度下降并不是每次迭代都向着整体最优化方向。

小结:
随机梯度下降法、批量梯度下降法相对来说都比较极端,简单对比如下:

方法特点
批量梯度下降a)采用所有数据来梯度下降。
b)批量梯度下降法在样本量很大的时候,训练速度慢。
随机梯度下降a)随机梯度下降用一个样本来梯度下降。
b)训练速度很快。
c)随机梯度下降法仅仅用一个样本决定梯度方向,导致解有可能不是全局最优。
d)收敛速度来说,随机梯度下降法一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。

下面介绍能结合两种方法优点的小批量梯度下降法。

3、 小批量(Mini-Batch)梯度下降的求解思路如下
对于总数为 m m m个样本的数据,根据样本的数据,选取其中的 n ( 1 < n < m ) n(1< n< m) n(1<n<m)个子样本来迭代。其参数 θ \theta θ按梯度方向更新 θ i \theta_i θi公式如下:
θ i = θ i − α ∑ j = t t + n − 1 ( h θ ( x 0 j , x 1 j , . . . , x n j ) − y j ) x i j \theta_i = \theta_i - \alpha \sum^{t+n-1}_{j=t} ( h_\theta (x^{j}_{0}, x^{j}_{1}, ... , x^{j}_{n} ) - y^j ) x^{j}_{i} θi=θiαj=tt+n1(hθ(x0j,x1j,...,xnj)yj)xij

7. 各种梯度下降法性能比较

​ 下表简单对比随机梯度下降(SGD)、批量梯度下降(BGD)、小批量梯度下降(Mini-batch GD)、和Online GD的区别:

BGDSGDMini-batch GDOnline GD
训练集固定固定固定实时更新
单次迭代样本数整个训练集单个样本训练集的子集根据具体算法定
算法复杂度一般
时效性一般一般
收敛性稳定不稳定较稳定不稳定

​ Online GD于Mini-batch GD/SGD的区别在于,所有训练数据只用一次,然后丢弃。这样做的优点在于可预测最终模型的变化趋势。

​ Online GD在互联网领域用的较多,比如搜索广告的点击率(CTR)预估模型,网民的点击行为会随着时间改变。用普通的BGD算法(每天更新一次)一方面耗时较长(需要对所有历史数据重新训练);另一方面,无法及时反馈用户的点击行为迁移。而Online GD算法可以实时的依据网民的点击行为进行迁移。

8. 推导多元函数梯度下降法的迭代公式。

根据多元函数泰勒公式,如果忽略一次以上的项,函数在 x \mathbf{x} x点处可以展开为
f ( x + Δ x ) = f ( x ) + ( ∇ f ( x ) ) T Δ x + o ( ∥ Δ x ∥ ) f(\mathbf{x}+\Delta \mathbf{x})=f(\mathbf{x})+(\nabla f(\mathbf{x}))^{\mathrm{T}} \Delta \mathbf{x}+o(\|\mathbf{\Delta} \mathbf{x}\|) f(x+Δx)=f(x)+(f(x))TΔx+o(Δx)
对上式变形,函数的增量与自变量增量、函数梯度的关系为
f ( x + Δ x ) − f ( x ) = ( ∇ f ( x ) ) T Δ x + o ( ∥ Δ x ∥ ) f(\mathbf{x}+\Delta \mathbf{x})-f(\mathbf{x})=(\nabla f(\mathbf{x}))^{\mathrm{T}} \Delta \mathbf{x}+o(\|\Delta \mathbf{x}\|) f(x+Δx)f(x)=(f(x))TΔx+o(∥Δx)
如果令 Δ x = − ∇ f ( x ) \Delta \mathbf{x}=-\nabla f(\mathbf{x}) Δx=f(x)则有
f ( x + Δ x ) − f ( x ) ≈ − ( ∇ f ( x ) ) T ∇ f ( x ) ≤ 0 f(\mathbf{x}+\Delta \mathbf{x})-f(\mathbf{x}) \approx-(\nabla f(\mathbf{x}))^{\mathrm{T}} \nabla f(\mathbf{x}) \leq 0 f(x+Δx)f(x)(f(x))Tf(x)0
即函数值减小。即有
f ( x + Δ x ) ≤ f ( x ) f(\mathbf{x}+\Delta \mathbf{x}) \leq f(\mathbf{x}) f(x+Δx)f(x)
梯度下降法每次的迭代增量为
Δ x = − α ∇ f ( x ) \Delta \mathbf{x}=-\alpha \nabla f(\mathbf{x}) Δx=αf(x)
其中 α \alpha α为人工设定的接近于的正数,称为步长或学习率。其作用是保证 x + Δ x \mathbf{x}+\Delta \mathbf{x} x+Δx x \mathbf{x} x
邻域内,从而可以忽略泰勒公式中的 o ( ∥ Δ x ∥ ) o(\|\Delta \mathbf{x}\|) o(∥Δx)项。

使用该增量则有
( ∇ f ( x ) ) T Δ x = − α ( ∇ f ( x ) ) T ( ∇ f ( x ) ) ≤ 0 (\nabla f(\mathbf{x}))^{\mathrm{T}} \Delta \mathbf{x}=-\alpha(\nabla f(\mathbf{x}))^{\mathrm{T}}(\nabla f(\mathbf{x})) \leq 0 (f(x))TΔx=α(f(x))T(f(x))0
函数值下降。从初始点 x 0 \mathbf{x}_{0} x0开始,反复使用如下迭代公式
x k + 1 = x k − α ∇ f ( x k ) \mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \nabla f\left(\mathbf{x}_{k}\right) xk+1=xkαf(xk)
只要没有到达梯度为0的点,函数值会沿序列 x k \mathbf{x}_{k} xk递减,最终收敛到梯度为0 的点。从 x 0 \mathbf{x}_{0} x0
出发,用迭代公式进行迭代,会形成一个函数值递减的序列 { x i } \left\{\mathbf{x}_{i}\right\} {xi}
f ( x 0 ) ≥ f ( x 1 ) ≥ f ( x 2 ) ≥ … ≥ f ( x k ) f\left(\mathbf{x}_{0}\right) \geq f\left(\mathbf{x}_{1}\right) \geq f\left(\mathbf{x}_{2}\right) \geq \ldots \geq f\left(\mathbf{x}_{k}\right) f(x0)f(x1)f(x2)f(xk)

9. 梯度下降法如何判断是否收敛?

迭代终止的条件是函数的梯度值为0(实际实现时是接近于0 即可),此时认为已经达
到极值点。可以通过判定梯度的二范数是否充分接近于0 而实现。

10. 梯度下降法为什么要在迭代公式中使用步长系数?

其作用是保证 x + Δ x \mathbf{x}+\Delta \mathbf{x} x+Δx x \mathbf{x} x的邻域内,即控制增量的步长,从而可以忽略泰勒公式中的
o ( ∥ Δ x ∥ ) o(\|\Delta \mathbf{x}\|) o(∥Δx)项。否则不能保证每次迭代时函数值下降。

11. 梯度下降法和牛顿法能保证找到函数的极小值点吗,为什么?

不能,可能收敛到鞍点,不是极值点。

12. 解释一元函数极值判别法则。

假设 x 0 x_0 x0为函数的驻点,可分为以下三种情况。
case1:在该点处的二阶导数大于0,则为函数的极小值点;
case2:在该点处的二阶导数小于0,则为极大值点;
case3:在该点处的二阶导数等于0,则情况不定,可能是极值点,也可能不是极值点。

13. 解释多元函数极值判别法则。

假设多元函数在点M的梯度为0 ,即M 是函数的驻点。其Hessian 矩阵有如下几种情
况。
case1:Hessian 矩阵正定,函数在该点有极小值。
case2:Hessian 矩阵负定,函数在该点有极大值。
case3:Hessian 矩阵不定,则不是极值点,称为鞍点。
Hessian 矩阵正定类似于一元函数的二阶导数大于0,负定则类似于一元函数的二阶导
数小于0。

14. 什么是鞍点?

Hessian 矩阵不定的点称为鞍点,它不是函数的极值点。

15. 解释什么是局部极小值,什么是全局极小值。

  • 全局极小值
    • 假设 x ∗ \mathbf{x}^{*} x是一个可行解,如果对可行域内所有点 x \mathbf{x} x都有 f ( x ∗ ) ≤ f ( x ) f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x}) f(x)f(x),则
      x ∗ \mathbf{x}^{*} x为全局极小值。
  • 局部极小值
    • 对于可行解 x ∗ \mathbf{x}^{*} x,如果存在其 δ \delta δ邻域,使得该邻域内的所有点即所有满足
      ∥ x − x ∗ ∥ ≤ δ \left\|\mathbf{x}-\mathbf{x}^{*}\right\| \leq \delta xxδ的点 x \mathbf{x} x,都有 f ( x ∗ ) ≤ f ( x ) f\left(x^{*}\right) \leq f(x) f(x)f(x),则称 x ∗ \mathbf{x}^{*} x为局部极小值。

16. 推导多元函数牛顿法的迭代公式。

根据费马定理,函数在点 x \mathbf{x} x 处取得极值的必要条件是梯度为0

∇ f ( x ) = 0 \nabla f(\mathbf{x})=\mathbf{0} f(x)=0
对于一般的函数,直接求解此方程组存在困难。对目标函数在 x 0 \mathbf{x}_{0} x0 处作二阶泰勒展开
f ( x ) = f ( x 0 ) + ∇ f ( x 0 ) T ( x − x 0 ) + 1 2 ( x − x 0 ) T ∇ 2 f ( x 0 ) ( x − x 0 ) + o ( ∥ k − x 0 ∥ 2 ) f(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right)^{\mathrm{T}}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\mathrm{T}} \nabla^{2} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)+o\left(\left\|\mathbf{k}-\mathbf{x}_{0}\right\|^{2}\right) f(x)=f(x0)+f(x0)T(xx0)+21(xx0)T2f(x0)(xx0)+o(kx02)
忽略二次以上的项,将目标函数近似成二次函数,等式两边同时对 x \mathbf{x} x求梯度,可得
∇ f ( x ) ≈ ∇ f ( x 0 ) + ∇ 2 f ( x 0 ) ( x − x 0 ) \nabla f(\mathbf{x}) \approx \nabla f\left(\mathbf{x}_{0}\right)+\nabla^{2} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) f(x)f(x0)+2f(x0)(xx0)
其中 ∇ 2 f ( x 0 ) \nabla^{2} f\left(\mathbf{x}_{0}\right) 2f(x0)为在 x 0 \mathbf{x}_{0} x0 处的Hessian 矩阵。令函数的梯度为0 ,有
∇ f ( x 0 ) + ∇ 2 f ( x 0 ) ( x − x 0 ) = 0 \nabla f\left(\mathbf{x}_{0}\right)+\nabla^{2} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)=\mathbf{0} f(x0)+2f(x0)(xx0)=0
解这个线性方程组可以得到
x = x 0 − ( ∇ 2 f ( x 0 ) ) − 1 ∇ f ( x 0 ) (1) \tag{1}\mathbf{x}=\mathbf{x}_{0}-\left(\nabla^{2} f\left(\mathbf{x}_{0}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{0}\right) x=x0(2f(x0))1f(x0)(1)
如果将梯度向量简写为 g \mathbf{g} g ,Hessian 矩阵简记为 H \mathbf{H} H ,式(1)可以简写为
x = x 0 − H − 1 g (2) \tag{2}\mathbf{x}=\mathbf{x}_{0}-\mathbf{H}^{-1} \mathbf{g} x=x0H1g(2)
在泰勒公式中忽略了高阶项将函数做了近似,因此这个解不一定是目标函数的驻点,需要反复用式(2) 进行迭代。从初始点 x 0 \mathbf{x}_{0} x0处开始,计算函数在当前点处的Hessian 矩阵和梯度向量,然后用下面的公式进行迭代

x k + 1 = x k − α H k − 1 g k (3) \tag{3} \mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha \mathbf{H}_{k}^{-1} \mathbf{g}_{k} xk+1=xkαHk1gk(3)

直至收敛到驻点处。迭代终止的条件是梯度的模接近于0 ,或达到指定的迭代次数。其中 α \alpha α是人工设置的学习率。需要学习率的原因与梯度下降法相同,是为了保证能够忽略泰勒公式中的高阶无穷小项。

这篇关于20240320-1-梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854148

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

分布式训练同步梯度出现形状不一致的解决方案

1、问题描述           为了加快大模型的训练速度,采用了分布式训练策略,基于MultiWorkerServerStrategy模式,集群之间采用Ring—Reduce的通信机制,不同节点在同步梯度会借助collective_ops.all_gather方法将梯度进行汇聚收集,汇聚过程出现了: allreduce_1/CollectiveGather_1 Inconsitent out

【机器学习】梯度提升和随机森林的概念、两者在python中的实例以及梯度提升和随机森林的区别

引言 梯度提升(Gradient Boosting)是一种强大的机器学习技术,它通过迭代地训练决策树来最小化损失函数,以提高模型的预测性能 随机森林(Random Forest)是一种基于树的集成学习算法,它通过组合多个决策树来提高预测的准确性和稳定性 文章目录 引言一、梯度提升1.1 基本原理1.1.1 初始化模型1.1.2 迭代优化1.1.3 梯度计算1.1.4模型更新 1.2

jmeter 梯度测试 如何查看TPS、RT指标

TPS= 服务器处理请求总数/花费的总时间 149371 (请求量)÷ 113(1分53秒)=1321/秒 跟汇总报告的吞吐量差不多,可以认为吞吐量=TPS 平均值,中位数,最大值,最小值的单位都是毫秒ms 下载插件梯度插件 https://jmeter-plugins.org/install/Install/ 插件管理器的jar包下载好以后,我们需要把jar包放在lib\ext目录下边

mllib之随机森林与梯度提升树

随机森林和GBTs都是集成学习算法,它们通过集成多棵决策树来实现强分类器。 集成学习方法就是基于其他的机器学习算法,并把它们有效的组合起来的一种机器学习算法。组合产生的算法相比其中任何一种算法模型更强大、准确。 随机森林和梯度提升树(GBTs)。两者之间主要差别在于每棵树训练的顺序。 随机森林通过对数据随机采样来单独训练每一棵树。这种随机性也使得模型相对于单决策树更健壮,且不易在

基于Python的机器学习系列(26):PyTorch中的梯度计算

在本篇中,我们将探讨PyTorch的autograd功能,它为张量操作提供自动微分。我们将学习如何使用torch.autograd工具计算梯度并进行反向传播。 自动微分(Autograd)         PyTorch的autograd包自动计算张量的梯度。当一个张量的.requires_grad属性被设置为True时,PyTorch会追踪该张量的所有操作。在计算完成后,您可

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介

AI学习指南深度学习篇-随机梯度下降法(Stochastic Gradient Descent,SGD)简介 在深度学习领域,优化算法是至关重要的一部分。其中,随机梯度下降法(Stochastic Gradient Descent,SGD)是最为常用且有效的优化算法之一。本篇将介绍SGD的背景和在深度学习中的重要性,解释SGD相对于传统梯度下降法的优势和适用场景,并提供详细的示例说明。 1.