【Python】豆瓣电影TOP250数据规律分析(Pearson相关系数、折线图、条形图、直方图)

本文主要是介绍【Python】豆瓣电影TOP250数据规律分析(Pearson相关系数、折线图、条形图、直方图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、数据集预览

在这里插入图片描述
部分数据说明:
豆瓣排名num
评分rating_num
评分人数comment_num
电影时长movie_duration

2、查看电影数据集基本数据信息

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('电影排名.csv') #读取数据#1.查看电影数据集基本数据信息
print(data.describe())

在这里插入图片描述

3、Pearson相关系数分析数据之间的关系

#2.分析数据集中的数据项和电影排名的关系。
#输出Pearson相关系数,并保留两位小数
print('相关系数矩阵为:','\n',np.round(data.iloc[1:,1:].corr(method = 'pearson'), 2))

在这里插入图片描述
分析:
相关系数的绝对值越大,相关性越强:相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
通常情况下通过以下取值范围判断变量的相关强度:
0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关

(1)豆瓣排名num和评分rating_num之间的相关系数为:-0.69,可见其存在强相关关系。即评分越高,排名数越小(排名越靠前)
(2)豆瓣排名num和评分人数comment_num之间的相关系数为:-0.65,强相关,即评分人数越多,排名越靠前!
(3)豆瓣排名num和电影时长movie_duration的相关系数为:-0.26,关系为弱相关,可以认为这两者并没什么关系。(常识亦可知,一个电影的好坏,排名是否靠前,与其时长确实关系不大)

4、分析结果并使用图形说明

折线图
import matplotlib.pyplot as plt
#(1)豆瓣排名num和评分rating_num之间的关系折线分布图
plt.plot(data['num'],data['rating_num'],'ro-')
plt.show()#(2)豆瓣排名num和评分人数comment_num之间的关系折线分布图
plt.plot(data['num'],data['comment_num'],'b*-')
plt.bar(data['num'],data['comment_num'])
plt.show()#(3)豆瓣排名num和电影时长movie_duration的关系折线分布图
plt.plot(data['num'],data['movie_duration'],'gD-')
plt.show()

(1)豆瓣排名num和评分rating_num之间的关系折线图分布图
在这里插入图片描述

(2)豆瓣排名num和评分人数comment_num之间的关系折线分布图
在这里插入图片描述
(3)豆瓣排名num和电影时长movie_duration的关系分布折线图
在这里插入图片描述

条形图
#条形图
#plt.bar(data['num'],data['rating_num']-8) #通过减8的方法来控制范围
plt.ylim(8,10)
plt.bar(data['num'],data['rating_num']) plt.bar(data['num'],data['comment_num'],color='pink')plt.bar(data['num'],data['movie_duration'],color='green')

(1)豆瓣排名num和评分rating_num之间条形分布图
直接绘制效果不明显
在这里插入图片描述

设置y轴范围后效果不错:
在这里插入图片描述

(2)豆瓣排名num和评分人数comment_num之间关系条形图
在这里插入图片描述

(3)豆瓣排名num和电影时长movie_duration的关系分布直方图
在这里插入图片描述

直方图
#直方图(反映数据分布规律,不反映数据之间的关系)
plt.hist(data['rating_num'])plt.hist(data['comment_num'], bins=100, normed=0, facecolor="blue", edgecolor="black", alpha=0.7)plt.rcParams['font.sans-serif']=['SimHei']   # 用黑体显示中文
plt.rcParams['axes.unicode_minus']=False     # 正常显示负号
plt.xlabel("区间")
plt.ylabel("频数/频率")
plt.title("频数/频率分布直方图")
plt.hist(data['movie_duration'], 40, histtype='stepfilled', facecolor='r', alpha=0.65)

(1)评分分布规律
在这里插入图片描述

(2)评分数目分布规律直方图
在这里插入图片描述
(3)电影时长分布直方图
在这里插入图片描述

标准化后对比分析
#4.附加实验:标准化后,对比分析评分、评论人数、时长数据的差异
def MaxMinNormalization(x):  #0/1标准化x = (x - np.min(x)) / (np.max(x) - np.min(x))return xd1 = MaxMinNormalization(data['rating_num'])
d2 = MaxMinNormalization(data['comment_num'])
d3 = MaxMinNormalization(data['movie_duration'])plt.plot(data['num'],d1,'r-',d2,'b-',d3,'g-')
plt.legend(['评分rating_num','评分人数comment_num','电影时长movie_duration'])

在这里插入图片描述

这篇关于【Python】豆瓣电影TOP250数据规律分析(Pearson相关系数、折线图、条形图、直方图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847018

相关文章

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常